Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural architecture

25.02.2008
The neurons in the primary visual cortex processing high- and low-frequency images are distinct

Neuroscientists from the RIKEN Brain Science Institute, Wako, and New York University have used functional magnetic resonance imaging (fMRI) to study the organization of neurons in the primary visual cortex (V1) of humans and establish that the temporal frequency of a stimulus activates specific V1 neurons.

The V1 is an area at the back of the brain where the first stage of visual processing takes place. Although this is one of the most heavily studied parts of the visual cortex, little is known about how its neurons are arranged. In general, neurons with similar selectivity for visual stimuli cluster together. For example, V1 neurons that process stimuli from each eye are grouped into pillars, called ocular dominance columns.

V1 neurons are highly sensitive to the contrast, orientation, and spatio-temporal frequency of a visual stimulus. Temporal frequency is an important determinant of how moving images are processed by the brain and is a measure of how often an image appears in the visual field. This attribute is also of particular interest to RIKEN researcher Pei Sun and his team, headed by Keiji Tanaka and Kang Cheng, who have determined that images appearing less frequently over time are handled by neurons that arrange themselves differently to those that are activated by more frequently appearing images.

The fMRI technique allows the function and anatomical structure of the brain to be studied live and works by measuring the level of oxygen in the blood immediately after a neuron has been active, giving a pattern of which neurons have been triggered by a stimulus.

The team has shown that separate domains in human V1 respond preferentially to low- and high-temporal frequencies. The former appear to be continuous, whereas the latter seem to be more like isolated islands with no particular orientation (Fig. 1).

This study provides direct physiological evidence that different temporal frequencies are preferentially processed by spatially segregated streams in human V1. The work recently published in Nature Neuroscience (1) is the first to show neuronal organization specific to temporal frequency in primate V1.

Evidence of these separate neural regions will assist further study into human perception of moving images and help to develop a map of the neural architecture of the brain. Pei plans to develop the fMRI technique as “it could link animal and human behavioral studies, giving a better picture of how information is processed by the brain,” he says.

Reference

1. Sun, P., Ueno, K., Waggoner, R.A., Gardner, J.L., Tanaka, K. & Cheng, K. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI. Nature Neuroscience 10, 1404–1406 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/390/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>