Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural architecture

25.02.2008
The neurons in the primary visual cortex processing high- and low-frequency images are distinct

Neuroscientists from the RIKEN Brain Science Institute, Wako, and New York University have used functional magnetic resonance imaging (fMRI) to study the organization of neurons in the primary visual cortex (V1) of humans and establish that the temporal frequency of a stimulus activates specific V1 neurons.

The V1 is an area at the back of the brain where the first stage of visual processing takes place. Although this is one of the most heavily studied parts of the visual cortex, little is known about how its neurons are arranged. In general, neurons with similar selectivity for visual stimuli cluster together. For example, V1 neurons that process stimuli from each eye are grouped into pillars, called ocular dominance columns.

V1 neurons are highly sensitive to the contrast, orientation, and spatio-temporal frequency of a visual stimulus. Temporal frequency is an important determinant of how moving images are processed by the brain and is a measure of how often an image appears in the visual field. This attribute is also of particular interest to RIKEN researcher Pei Sun and his team, headed by Keiji Tanaka and Kang Cheng, who have determined that images appearing less frequently over time are handled by neurons that arrange themselves differently to those that are activated by more frequently appearing images.

The fMRI technique allows the function and anatomical structure of the brain to be studied live and works by measuring the level of oxygen in the blood immediately after a neuron has been active, giving a pattern of which neurons have been triggered by a stimulus.

The team has shown that separate domains in human V1 respond preferentially to low- and high-temporal frequencies. The former appear to be continuous, whereas the latter seem to be more like isolated islands with no particular orientation (Fig. 1).

This study provides direct physiological evidence that different temporal frequencies are preferentially processed by spatially segregated streams in human V1. The work recently published in Nature Neuroscience (1) is the first to show neuronal organization specific to temporal frequency in primate V1.

Evidence of these separate neural regions will assist further study into human perception of moving images and help to develop a map of the neural architecture of the brain. Pei plans to develop the fMRI technique as “it could link animal and human behavioral studies, giving a better picture of how information is processed by the brain,” he says.

Reference

1. Sun, P., Ueno, K., Waggoner, R.A., Gardner, J.L., Tanaka, K. & Cheng, K. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI. Nature Neuroscience 10, 1404–1406 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/390/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>