Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buck Research Focuses on Risk Factor for Parkinson’s Disease

20.02.2008
Study suggests preventive treatment may be useful for those who have high levels of particular enzyme that regulates nerve activity in the brain

A new study demonstrates that high levels of MAO-B, an enzyme that regulates nerve activity in the brain, cause Parkinson’s-like symptoms in mice genetically engineered to overexpress the protein. Furthermore, drugs currently used as an adjunct therapy for Parkinson’s in humans prevented the development of Parkinson’s symptoms in these same animals.

The findings, by scientists at the Buck Institute for Age Research, raise the possibility that humans could be tested to see if they have a risk factor for the progressive, incurable neurodegenerative disorder that affects 1.5 million Americans and receive preventive treatment. The study appears in the February 20 issue of the open-access, online journal, PLoS ONE.

Levels of measurable MAO-B vary 50-fold in humans and tend to increase with age. Several studies have suggested that increases in MAO-B contribute to the neurodegeneration associated with PD, but direct proof of a causative role for the enzyme has been lacking. The drug deprenyl, which inhibits MAO-B, is a longstanding therapy for Parkinson’s used together with drugs that boost the level of dopamine, an important neurotransmitter that is preferentially depleted in the disease. Clinical studies that suggest that deprenyl treatment alone does not impact mortality associated with Parkinson’s have cast doubt on the role of MAO-B in the disease itself. Buck faculty member Julie Andersen, PhD, who led the study says that may not be the case. “Those studies were targeted to patients who already had symptoms of Parkinson’s -- by the time Parkinson’s is symptomatically detectable, dopamine loss is usually at least 60%,” said Andersen. “Therefore the lack of effectiveness of MAO-B inhibition in these patients does not negate a role for MAO-B increase in disease development.” Andersen added, “We have demonstrated that elevations in MAO-B result in selective loss of neurons associated with Parkinson’s in a mouse model and that the severity of this loss is age-dependent.”

Tests to measure levels of MAO-B are not currently available to the general public, although enzyme levels are tracked in clinical trials. Andersen says MAO-B testing could be akin to current practices involving cholesterol, which is measured and monitored as a risk factor for cardiovascular disease. “However, it is important to note that Parkinson’s is a multi-factor disease,” said Andersen. “The fact that someone has high levels of MAO-B does not necessarily mean they are fated to develop Parkinson’s.”

Andersen said results of the study point to the need for an early diagnostic test for Parkinson’s. "Currently, by the time people are diagnosed with the disease they have already lost 60% of the neurotransmitter levels implicated in Parkinson’s; treatment with a drug like deprenyl would likely be most effective if taken before symptoms appear in order to halt disease progression."

The novel transgenic mouse line created for this study provides a new model for exploring molecular pathways involved in the initiation or early progression of several key features associated with Parkinson’s pathology including dopaminergic midbrain cell loss. The mouse line also allows for additional therapeutic drug testing.

Joining Andersen in the study were Jyothi K. Mallajosyula, Deepinder Kaur, Shankar J. Chinta, Subramanian Rajagopalan, Anand Rane, and David G. Nicholls of the Buck Institute, along with Dino DiMonte of the Parkinson’s Institute and Heather Macarthur of the Saint Louis University School of Medicine. The work was funded by the National Institutes of Health (R01 NS40057-04) and the National Parkinson’s Foundation.

The Buck Institute is an independent non-profit organization dedicated to extending the healthspan, the healthy years of each individual’s life. The National Institute of Aging designated the Buck a Nathan Shock Center of Excellence in the Biology of Aging, one of just five centers in the country. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer’s and Parkinson’s disease, cancer, stroke, and arthritis. Collaborative research at the Institute is supported by genomics, proteomics and bioinformatics technology.

Andrew Hyde | alfa
Further information:
http://www.buckinstitute.org
http://www.plos.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>