Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists explore consciousness

Research into ‘one of the major scientific challenges to be solved’
New results published in the Proceedings of the National Academy of Sciences

An international team of scientists led by a University of Leicester researcher has carried out a scientific study into the realm of consciousness.

The scientists have made a significant step into the understanding of conscious perception, by showing how single neurons in the human brain reacted to perceived and nonperceived images.

University of Leicester bioengineer Dr Rodrigo Quian Quiroga is spearheading this study which is opening new possibilities of exploring a hitherto relatively unchartered scientific area.

The team have today (MONDAY FEB 18) published a paper in an international journal, the Proceedings of the National Academy of Sciences (PNAS) revealing new discoveries in the field of consciousness studies.

Dr Quian Quiroga said: “There has been much interest in recent years in consciousness, which is considered by many as one of the major scientific challenges to be solved, or at least addressed in a scientific -rather than just philosophical- way.

“In fact, there are a few centres, journals and conferences dedicated to this topic. The problem with consciousness is that it is very hard to be defined and it implicates too many different things. For this reason, several researchers started to specify more clearly what they mean by consciousness (even if this is a limited view of the whole issue) and think about ways to study it in a scientific way. This approach was championed by the late Francis Crick and my former supervisor at Caltech, Christof Koch.
”Following this line, the paper in PNAS asks how the activity of single neurons in the human brain can reflect conscious perception.

“Recordings were done in epileptic patients candidates of curative surgery in which intracranial electrodes are implanted to establish the location of the epileptic focus and evaluate the potential outcome of the surgery. Patients usually stay for 1 or 2 weeks in the guard and this gives us the extraordinary opportunity to perform experiments and study how neurons in the human brain respond to different perceptual and behavioural tasks.

”In this particular study we showed pictures in a computer screen very briefly, at the threshold of conscious recognition. Subjects had to report whether they recognized or not the particular picture showed in each trial. The key point is that, since the pictures are shown very briefly, for exactly the same visual input sometimes the subjects reported recognizing the picture and sometimes not recognizing it. Then we could ask whether the neurons fire according to the subjects' conscious perception or the actual visual inputs.

”We found that the neurons we recorded responded to the conscious perception in an "all-or-none" way by dramatically changing their firing rate only when the pictures were recognized.

“For example, a neuron in the hippocampus of one patient fired very strongly to a picture of the patient's brother when recognized and remained completely silent when it was not, another neuron behaved in the same manner with pictures of the World Trade Centre, etc.

“Interestingly, based on the firing of these neurons it was possible to predict far above chance whether a picture was recognized or not. Another interesting observation is that a picture flashed very briefly generated nearly the same response -if recognized- as when shown for much longer periods of time. This means that a single snapshot as brief as 33 ms was sufficient to trigger strong neuronal responses far outlasting the stimulus presentation, signalling the conscious perception of the picture shown.”
Dr Quian Quiroga said the study had important implications. Potential applications of this discovery include the development of Neural Prosthetic devices to be used by paralysed patients or amputees. A patient with a lesion in the spinal cord (as with the late Christopher Reeves), can still think about reaching a cup of tea with his arm, but this order is not transmitted to the muscles.

The idea of Neural Prostheses is to read these commands directly from the brain and transmit them to bionic devices such as a robotic arm that the patient could control directly from the brain.

Dr Quian Quiroga’s work showing that it is possible to read signals from the brain is a good step forward in this direction. But there are still clinical and ethical issues that have to be resolved before Neural Prosthetic devices can be applied in humans.

In particular, these would involve invasive surgery, which would have to be justified by a clear improvement for the patient before it could be undertaken.

Dr Quian Quiroga’s discovery has far-reaching implications not only for the development of neuronal prostheses, but for treatment of patients with pathologies involving the hippocampal formation, such as epilepsy, Alzheimers and schizophrenia and for further understanding of how perceptions and memories are represented in the brain.

For more information contact:

Rodrigo Quian Quiroga
Reader in Bioengineering
Department of Engineering, University of Leicester
LE1 7RH Leicester, United Kingdom
Tel / Fax: +44 (0)116 252 2314 / 2619
Issued by:

Ather Mirza
Press and Corporate Communications
Division of Marketing and Communications
University of Leicester
University Road
tel: 0116 252 3335

- A member of the 1994 Group of universities that share a commitment to research excellence, high quality teaching and an outstanding student experience.
Ranked top for student satisfaction in England (jointly with Oxford) among mainstream universities (average score of 4.4 out of 5 for overall satisfaction)
Ranked as a Top 20 university by The Sunday Times University Guide, The Guardian University Guide and the UK Good University Guide

One of just 23 UK universities to feature in world’s top 200- Shanghai Jiao Tong International Index, 2005-07.

Ranked in top 200 world universities by the THES (Times Higher Education Supplement)

Short listed University of the Year in 2007 by The Sunday Times and Short listed Higher Education Institution of the Year - THES awards 2005 and 2006
Ranked top 10 in England for research impact by The Guardian
Students’ Union of the Year award 2005, short listed 2006 and 2007
Founded in 1921, the University of Leicester has 19,000 students from 136 countries. Teaching in 18 subject areas has been graded Excellent by the Quality Assurance Agency- including 14 successive scores - a consistent run of success matched by just one other UK University. Leicester is world renowned for the invention of DNA Fingerprinting by Professor Sir Alec Jeffreys and houses Europe's biggest academic Space Research Centre. 90% of staff are actively engaged in high quality research and 13 subject areas have been awarded the highest rating of 5* and 5 for research quality, demonstrating excellence at an international level. The University's research grant income places it among the top 20 UK research universities. The University employs over 3,000 people, has an annual turnover of £184m, covers an estate of 94 hectares and is engaged in a £300m investment programme- among the biggest of any UK university.

Ather Mirza | University of Leicester
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>