Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tumor-targeting viral therapy slows neuroblastoma, malignant peripheral nerve sheath tumors

Study led by Cincinnati Children's suggests innovative therapy for hard-to-treat solid tumors

Researchers in a multi-institutional study led by Cincinnati Children’s Hospital Medical Center slowed the growth of two particularly stubborn solid tumor cancers – neuroblastoma and peripheral nerve sheath tumors –without harming healthy tissues by inserting instructions to inhibit tissue growth into an engineered virus, according to study results published in the February 15 Cancer Research.

“Malignant solid tumors are still very difficult to treat effectively, especially without causing harm to normal tissues, so we need to find innovative therapeutic approaches,” said Timothy Cripe, M.D., Ph.D., a physician and researcher at Cincinnati Children’s. “In our study, this tumor-targeting viral therapy enhanced anti-tumor activity by stimulating multiple biological processes, including directly killing the cancer cells and reducing the formation of blood vessels that fed the tumors. These data support continuing development and study of our tumor-targeted viral therapy to fight cancer.”

Previous research has documented that oncolytic herpes simplex virus (oHSV) and similar viruses can infect and kill human cancer cells without harming normal, healthy cells or causing disease. In their study, Dr. Cripe and his colleagues genetically armed oHSV with a gene that carries instructions for a cancer-fighting protein, human tissue inhibitor of metalloproteinase 3 (TIMP3). TIMP3 blocks enzymes that aid the development and progression of cancer, called matrix of metalloproteinases (MMP). Specifically, MMPs help break down molecules that are important for the structural support and normal development of cells, organs and maintenance of tissues. When MMP activity becomes unbalanced, the enzyme plays a well-documented role in the formation of invasive and metastatic cancers, including pediatric neuroblastoma, the most common solid cancer tumor in childhood.

Researchers dubbed the tumor-targeted viral therapy created by combining of TIMP and oHSV as rQT3. In laboratory studies involving human cancer cells and mice designed to develop neuroblastoma or peripheral nerve sheath tumors, rQT3 reduced new blood vessel development and increased toxicity to both kinds of tumor cells. In addition, rQT3 treatment resulted in longer life spans in mice compared to mouse models receiving just saline or other treatments.

Dr. Cripe said the researchers also discovered that rQT3 reduced the number of circulating endothelial progenitors (CEP). CEPs are derived from blood marrow and circulate in the blood. They have the ability to become cells that line blood vessels to promote blood flow.

“Our findings suggest that therapeutic viruses can act systemically by limiting the mobilization and recruitment of bone-barrow derived progenitors, both CEPs and others, that contribute to the tumor microenvironment and growth, resulting in the restriction of new blood vessel growth that can feed tumors,” Dr. Cripe said.

Neuroblastoma is a solid tumor cancer that begins in the sympathetic nervous system and most often strikes children younger than 5 years old. For children younger than 2, or those with a single mass tumor, the combination of surgery and chemotherapy has led to cure rates of 90 to 95 percent. In older children or those with metastatic disease, neuroblastoma is a much harder to fight. Tumor cells are often able to survive ordinary doses of chemotherapy and radiation, leading to relapses that are difficult to cure. During the last three decades, Cincinnati Children’s has been a leader in developing high-dose chemotherapy used in combination with bone marrow transplants and other drug treatments to help improve outcomes for patients with high-risk neuroblastoma. Malignant peripheral nerve sheath tumors are cancers affecting the connective tissue surrounding nerves. The first-line treatment is surgical removal with chemotherapy or radiotherapy used as auxiliary therapies.

Nick Miller | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>