Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-targeting viral therapy slows neuroblastoma, malignant peripheral nerve sheath tumors

18.02.2008
Study led by Cincinnati Children's suggests innovative therapy for hard-to-treat solid tumors

Researchers in a multi-institutional study led by Cincinnati Children’s Hospital Medical Center slowed the growth of two particularly stubborn solid tumor cancers – neuroblastoma and peripheral nerve sheath tumors –without harming healthy tissues by inserting instructions to inhibit tissue growth into an engineered virus, according to study results published in the February 15 Cancer Research.

“Malignant solid tumors are still very difficult to treat effectively, especially without causing harm to normal tissues, so we need to find innovative therapeutic approaches,” said Timothy Cripe, M.D., Ph.D., a physician and researcher at Cincinnati Children’s. “In our study, this tumor-targeting viral therapy enhanced anti-tumor activity by stimulating multiple biological processes, including directly killing the cancer cells and reducing the formation of blood vessels that fed the tumors. These data support continuing development and study of our tumor-targeted viral therapy to fight cancer.”

Previous research has documented that oncolytic herpes simplex virus (oHSV) and similar viruses can infect and kill human cancer cells without harming normal, healthy cells or causing disease. In their study, Dr. Cripe and his colleagues genetically armed oHSV with a gene that carries instructions for a cancer-fighting protein, human tissue inhibitor of metalloproteinase 3 (TIMP3). TIMP3 blocks enzymes that aid the development and progression of cancer, called matrix of metalloproteinases (MMP). Specifically, MMPs help break down molecules that are important for the structural support and normal development of cells, organs and maintenance of tissues. When MMP activity becomes unbalanced, the enzyme plays a well-documented role in the formation of invasive and metastatic cancers, including pediatric neuroblastoma, the most common solid cancer tumor in childhood.

Researchers dubbed the tumor-targeted viral therapy created by combining of TIMP and oHSV as rQT3. In laboratory studies involving human cancer cells and mice designed to develop neuroblastoma or peripheral nerve sheath tumors, rQT3 reduced new blood vessel development and increased toxicity to both kinds of tumor cells. In addition, rQT3 treatment resulted in longer life spans in mice compared to mouse models receiving just saline or other treatments.

Dr. Cripe said the researchers also discovered that rQT3 reduced the number of circulating endothelial progenitors (CEP). CEPs are derived from blood marrow and circulate in the blood. They have the ability to become cells that line blood vessels to promote blood flow.

“Our findings suggest that therapeutic viruses can act systemically by limiting the mobilization and recruitment of bone-barrow derived progenitors, both CEPs and others, that contribute to the tumor microenvironment and growth, resulting in the restriction of new blood vessel growth that can feed tumors,” Dr. Cripe said.

Neuroblastoma is a solid tumor cancer that begins in the sympathetic nervous system and most often strikes children younger than 5 years old. For children younger than 2, or those with a single mass tumor, the combination of surgery and chemotherapy has led to cure rates of 90 to 95 percent. In older children or those with metastatic disease, neuroblastoma is a much harder to fight. Tumor cells are often able to survive ordinary doses of chemotherapy and radiation, leading to relapses that are difficult to cure. During the last three decades, Cincinnati Children’s has been a leader in developing high-dose chemotherapy used in combination with bone marrow transplants and other drug treatments to help improve outcomes for patients with high-risk neuroblastoma. Malignant peripheral nerve sheath tumors are cancers affecting the connective tissue surrounding nerves. The first-line treatment is surgical removal with chemotherapy or radiotherapy used as auxiliary therapies.

Nick Miller | EurekAlert!
Further information:
http://www.cincinnatichildrens.org/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>