Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies reveal surprises about deep sea corals and their past

15.02.2008
Insights from past will help predict the future

New research shows that the second most diverse group of hard corals first evolved in the deep sea, and not in shallow waters. Stylasterids, or lace corals, diversified in deep waters before launching at least three successful invasions of shallow water habitats in the past 30 million years. This finding contradicts a long-established theory that suggests corals and other marine animals all evolved in shallow water before migrating into deeper habitats.

“When we look at the DNA and fossils of these animals, we can trace how these transitions from deep water to shallow habitats have popped up in different parts of the family at different points in time,” says Alberto Lindner, a coral researcher at the University of São Paulo, Brazil. “We also see this story unfold in which the corals are building skeletal defenses in what looks like a long-running arms race with their predators. Together, it shows us how wrong it is to think of deep-sea ecosystems as being isolated and static.”

Lindner and a panel of researchers will discuss these and other new discoveries about deep-sea corals at a press conference at the American Association for the Advancement of Science (AAAS) Annual Meeting in Boston, MA, on Thursday, February 14, at 12:00pm noon EST and in a 90-minute session on Friday, February 15, at 8:30am EST.

Regardless of where they evolved, the corals living in these habitats continue to surprise researchers. “Deep-sea corals can be spectacularly long-lived, which makes them critical contributors to our efforts to understand the past,” says Brendan Roark, a paleoceanographer at Stanford University. “Our radiocarbon dating shows that some species have life spans of over 4000 years. That means some coral colonies have been alive since Stonehenge was erected. These animals are living antiquities.”

Many corals grow their skeletons in a manner similar to tree trunks, laying down growth rings that become historical archives of the water conditions over time. Analyzing the chemical composition of these layers allows researchers to trace changes in ocean circulation and temperature over hundreds to thousands of years. Such historical reconstructions are critical for understanding how climate change occurred in the past, and for making predictions about the future.

Roark’s finding on growth rates and longevity also challenge the adequacy of old models upon which the management of deep-sea coral species are based. “Growth rates have been overestimated by an order of magnitude in some fisheries management plans. Our new understanding of the great longevity of some of these species strongly suggests the need for more rigorous measures to ensure their populations are adequately protected.”

Research in these habitats is expensive and difficult, often leading to studies that are geographically constrained and impossible to compare. In an attempt to overcome these challenges, J. Murray Roberts of the Scottish Association for Marine Science will unveil plans for a novel international scientific program called the Trans-Atlantic Coral Ecosystem Study (TRACES).

The project will be the first to trace the flow of genes and animals across the seafloor communities of an entire ocean basin. TRACES researchers from Canada, the U.S., and the European Union will conduct exploratory cruises across the North Atlantic to study the environmental and ecological history of deep-sea communities beginning in late 2008.

Whereas Lindner’s work is concerned with how species evolved in the distant past, the TRACES geneticists are focused on tracking relatively recent changes in populations. Other TRACES researchers will expand upon Roark’s work; by collecting a large library of the isotope records stored in coral skeletons, they will be able to study historical climate change and create new models with better resolution than ever before.

“We must cross national boundaries to understand deep-sea coral ecosystems. The only way we can work out how to protect deep-sea corals is to understand how they are distributed and connected,” Roberts says. “Since we started work on TRACES we’ve been amazed at the response of the scientific community. Over 100 scientists are already involved and our first meetings are over-subscribed. Everyone agrees we owe it to future generations to make sure these unique ecosystems are protected by conservation plans based on sound science.”

Matthew Wright | EurekAlert!
Further information:
http://www.seaweb.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>