Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies reveal surprises about deep sea corals and their past

15.02.2008
Insights from past will help predict the future

New research shows that the second most diverse group of hard corals first evolved in the deep sea, and not in shallow waters. Stylasterids, or lace corals, diversified in deep waters before launching at least three successful invasions of shallow water habitats in the past 30 million years. This finding contradicts a long-established theory that suggests corals and other marine animals all evolved in shallow water before migrating into deeper habitats.

“When we look at the DNA and fossils of these animals, we can trace how these transitions from deep water to shallow habitats have popped up in different parts of the family at different points in time,” says Alberto Lindner, a coral researcher at the University of São Paulo, Brazil. “We also see this story unfold in which the corals are building skeletal defenses in what looks like a long-running arms race with their predators. Together, it shows us how wrong it is to think of deep-sea ecosystems as being isolated and static.”

Lindner and a panel of researchers will discuss these and other new discoveries about deep-sea corals at a press conference at the American Association for the Advancement of Science (AAAS) Annual Meeting in Boston, MA, on Thursday, February 14, at 12:00pm noon EST and in a 90-minute session on Friday, February 15, at 8:30am EST.

Regardless of where they evolved, the corals living in these habitats continue to surprise researchers. “Deep-sea corals can be spectacularly long-lived, which makes them critical contributors to our efforts to understand the past,” says Brendan Roark, a paleoceanographer at Stanford University. “Our radiocarbon dating shows that some species have life spans of over 4000 years. That means some coral colonies have been alive since Stonehenge was erected. These animals are living antiquities.”

Many corals grow their skeletons in a manner similar to tree trunks, laying down growth rings that become historical archives of the water conditions over time. Analyzing the chemical composition of these layers allows researchers to trace changes in ocean circulation and temperature over hundreds to thousands of years. Such historical reconstructions are critical for understanding how climate change occurred in the past, and for making predictions about the future.

Roark’s finding on growth rates and longevity also challenge the adequacy of old models upon which the management of deep-sea coral species are based. “Growth rates have been overestimated by an order of magnitude in some fisheries management plans. Our new understanding of the great longevity of some of these species strongly suggests the need for more rigorous measures to ensure their populations are adequately protected.”

Research in these habitats is expensive and difficult, often leading to studies that are geographically constrained and impossible to compare. In an attempt to overcome these challenges, J. Murray Roberts of the Scottish Association for Marine Science will unveil plans for a novel international scientific program called the Trans-Atlantic Coral Ecosystem Study (TRACES).

The project will be the first to trace the flow of genes and animals across the seafloor communities of an entire ocean basin. TRACES researchers from Canada, the U.S., and the European Union will conduct exploratory cruises across the North Atlantic to study the environmental and ecological history of deep-sea communities beginning in late 2008.

Whereas Lindner’s work is concerned with how species evolved in the distant past, the TRACES geneticists are focused on tracking relatively recent changes in populations. Other TRACES researchers will expand upon Roark’s work; by collecting a large library of the isotope records stored in coral skeletons, they will be able to study historical climate change and create new models with better resolution than ever before.

“We must cross national boundaries to understand deep-sea coral ecosystems. The only way we can work out how to protect deep-sea corals is to understand how they are distributed and connected,” Roberts says. “Since we started work on TRACES we’ve been amazed at the response of the scientific community. Over 100 scientists are already involved and our first meetings are over-subscribed. Everyone agrees we owe it to future generations to make sure these unique ecosystems are protected by conservation plans based on sound science.”

Matthew Wright | EurekAlert!
Further information:
http://www.seaweb.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>