Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How believing can be seeing: study shows how context dictates what we believe we see

15.02.2008
Scientists at UCL (University College London) have found the link between what we expect to see, and what our brain tells us we actually saw. The study, published in this week’s PLoS Journal of Computational Biology, reveals that the context surrounding what we see is all important – sometimes overriding the evidence gathered by our eyes and even causing us to imagine things which aren’t really there.

The paper reveals that a vague background context is more influential and helps us to fill in more blanks than a bright, well-defined context. This may explain why we are prone to ‘see’ imaginary shapes in the shadows when the light is poor.

Eighteen observers were asked to concentrate on the centre of a black computer screen. Every time a buzzer sounded they pressed one of two buttons to record whether or not they had just seen a small, dim, grey ‘target’ rectangle in the middle of the screen. It did not appear every time, but when it did appear it was displayed for just 80 milliseconds (80 one thousandths of a second).

“People saw the target much more often if it appeared in the middle of a vertical line of similar looking, grey rectangles, compared to when it appeared in the middle of a pattern of bright, white rectangles. They even registered ‘seeing’ the target when it wasn’t actually there,” said Professor Zhaoping, lead author of the paper. “This is because people are mentally better prepared to see something vague when the surrounding context is also vague. It made sense for them to see it – so that’s what happened. When the target didn’t match the expectations set by the surrounding context, they saw it much less often.

“Illusionists have been alive to this phenomenon for years,” continued Professor Zhaoping. “When you see them throw a ball into the air, followed by a second ball, and then a third ball which ‘magically’ disappears, you wonder how they did it. In truth, there’s often no third ball - it’s just our brain being deceived by the context, telling us that we really did see three balls launched into the air, one after the other.

“Contrary to what one might expect, it is a vague rather than a bright and clearly visible context that most strongly permits our beliefs to override the evidence and fill in the blanks. In fact, a bright and clearly visible context actually overrides the evidence in the opposite direction - suppressing our ‘seeing’ of the vague target even when it is present.

“Mathematical modelling suggests that visual inference through context is processed in the brain beyond the primary visual cortex. By starting with a relatively simple experiment such as this, where visual input can be more easily and systematically manipulated, we are gaining a better understanding of how context influences what we see. Further studies along these lines can hopefully enable us to dissect the workings behind more complex and wondrous illusions.”

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>