Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How believing can be seeing: study shows how context dictates what we believe we see

15.02.2008
Scientists at UCL (University College London) have found the link between what we expect to see, and what our brain tells us we actually saw. The study, published in this week’s PLoS Journal of Computational Biology, reveals that the context surrounding what we see is all important – sometimes overriding the evidence gathered by our eyes and even causing us to imagine things which aren’t really there.

The paper reveals that a vague background context is more influential and helps us to fill in more blanks than a bright, well-defined context. This may explain why we are prone to ‘see’ imaginary shapes in the shadows when the light is poor.

Eighteen observers were asked to concentrate on the centre of a black computer screen. Every time a buzzer sounded they pressed one of two buttons to record whether or not they had just seen a small, dim, grey ‘target’ rectangle in the middle of the screen. It did not appear every time, but when it did appear it was displayed for just 80 milliseconds (80 one thousandths of a second).

“People saw the target much more often if it appeared in the middle of a vertical line of similar looking, grey rectangles, compared to when it appeared in the middle of a pattern of bright, white rectangles. They even registered ‘seeing’ the target when it wasn’t actually there,” said Professor Zhaoping, lead author of the paper. “This is because people are mentally better prepared to see something vague when the surrounding context is also vague. It made sense for them to see it – so that’s what happened. When the target didn’t match the expectations set by the surrounding context, they saw it much less often.

“Illusionists have been alive to this phenomenon for years,” continued Professor Zhaoping. “When you see them throw a ball into the air, followed by a second ball, and then a third ball which ‘magically’ disappears, you wonder how they did it. In truth, there’s often no third ball - it’s just our brain being deceived by the context, telling us that we really did see three balls launched into the air, one after the other.

“Contrary to what one might expect, it is a vague rather than a bright and clearly visible context that most strongly permits our beliefs to override the evidence and fill in the blanks. In fact, a bright and clearly visible context actually overrides the evidence in the opposite direction - suppressing our ‘seeing’ of the vague target even when it is present.

“Mathematical modelling suggests that visual inference through context is processed in the brain beyond the primary visual cortex. By starting with a relatively simple experiment such as this, where visual input can be more easily and systematically manipulated, we are gaining a better understanding of how context influences what we see. Further studies along these lines can hopefully enable us to dissect the workings behind more complex and wondrous illusions.”

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>