Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show leaky muscle cells lead to fatigue

12.02.2008
What slows down marathoners may also tire heart failure patients; experimental drug that improves endurance may provide patients with relief from exhaustion

What do marathoners and heart failure patients have in common? More than you think according to new findings by physiologists at Columbia University Medical Center.

The new study shows that the fatigue that marathoners and other extreme athletes feel at the end of a race is caused by a tiny leak inside their muscles that probably also saps the energy from patients with heart failure.

The leak – which allows calcium to continuously leak inside muscle cells – weakens the force produced by the muscle and also turns on a protein-digesting enzyme that damages the muscle fibers. The new study found the leak was present in the muscle of mice after an intense three-week daily swimming regimen and in human athletes after three days of daily intense cycling. The same leak was previously discovered by Marks and colleagues in the muscles of animals with heart failure.

The new study also found that an experimental drug developed by the researchers alleviated muscle fatigue in mice after exercise, suggesting that the drug also may provide relief from the severe exhaustion that prevents patients with chronic heart failure from getting out of bed or fixing dinner.

The results will be published in the online edition of the Proceedings of the National Academy of Sciences at 5 p.m. ET on February 11, 2008.

“The study does not mean exercise is bad for you,” says the study’s senior author, Andrew Marks, M.D., chair of the Department of Physiology and Cellular Biophysics, and director of the Clyde and Helen Wu Center for Molecular Cardiology at Columbia University Medical Center. “We only saw the leak in animals and human athletes that exercised three hours a day at very high intensities for several days or weeks in a row until they were exhausted.” He notes that athletes’ muscles also will return to normal after several days of rest and any muscle damage will be repaired after several days or weeks depending on the degree of exercise.

However, the arm, leg and breathing muscles of patients with heart failure never have a chance to recover. “People with chronic heart failure are subject to this same kind of muscle leak and damage constantly even without doing any exercise,” Marks says. “One of these patients’ most debilitating symptoms is muscle weakness and fatigue, which can be so bad they can’t get out of bed, brush their teeth, or feed themselves.”

This fatigue experienced by heart failure patients does not stem from a reduction in the amount of blood and oxygen supplied to the muscles by the heart, as one might expect. Instead, Marks’ previous research in muscles of mice with heart failure suggested that fatigue in patients stems from the calcium leak, which reduced the ability of a single muscle to contract repeatedly before losing force.

“We then had a hunch that the process that produces fatigue in heart failure patients also may be responsible for the fatigue felt by athletes after a marathon or extreme training,” says the study’s first author, Andrew Bellinger, Ph.D., who is currently finishing his M.D. at Columbia University’s College of Physicians & Surgeons. “Our new paper shows that fatigue in both patients and athletes probably stems from the same leak.”

Fatigue Can Be Alleviated With Experimental Drug

The researchers then used the similarity between athletes and patients to their advantage to see if an experimental drug could increase exercise capacity and reduce fatigue.

The researchers gave the drug – which plugs the leak of calcium – to mice before the animals started a 3-week regimen of swimming. Without the drugs, mice are exhausted after three weeks of daily 3-hour swims. With the drug, the mice were still energetic, had lost less exercise capacity after 3 weeks, and their muscles showed fewer signs of calcium leakage, atrophy, and less muscle damage.

The cyclists in the current study were not given the drug, which is not yet available for people.

Plans are underway to test the drug at other medical centers in patients with heart failure to see if it relieves fatigue and improves heart function. Even if successful, it will take several years before the drug will be commercially available.

Study Also Provides Explanation for Muscle Fatigue Besides Lactic Acid

The calcium leak also provides a new explanation for the muscle soreness and fatigue that marathoners and other athletes can experience for weeks after crossing the finish line.

Physiologists have recently largely discarded the 100 year-old theory that lactic acid accumulation in the muscle cells produces fatigue and limits athletic performance. New theories have been exploring the role of calcium in this process. The involvement of defects in calcium handling in limiting muscle performance and producing exercise fatigue makes sense because the flow of calcium in and out of the muscle cell controls muscle contraction.

The discovery of the calcium leak in fatigued animals and athletes is the first time anyone has pinpointed a precise mechanism for the involvement of a defect in calcium handling in limiting exercise capacity.

Elizabeth Streich | EurekAlert!
Further information:
http://www.columbia.edu
http://www.cumc.columbia.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>