Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals why certain ovarian cancers develop resistance to platinum-based chemotherapy

12.02.2008
Mechanism of cisplatin resistance 'unlike any previously identified'

A team of researchers led by Fred Hutchinson Cancer Research Center has identified a new mechanism that explains why some recurrent ovarian tumors become resistant to treatment with commonly used platinum-based chemotherapy drugs such as cisplatin and carboplatin. They describe their research online Feb. 10 in the journal Nature.

While these findings are based on the study of ovarian-cancer cells from women with inherited mutations in the BRCA2 gene, they also may help explain the mechanics of cisplatin resistance in ovarian-cancer patients with BRCA1-gene mutations. Together such genetic mistakes are thought to cause about 10 percent of ovarian cancers, according to senior author Toshiyasu (Toshi) Taniguchi, M.D., Ph.D.

“Because BRCA1 and BRCA2 have similar functions in terms of DNA repair, we may be able to generalize these findings for women with either mutation,” said Taniguchi, an assistant member of the Hutchinson Center’s Human Biology and Public Health Sciences divisions.

BRCA2 works to repair damaged DNA; inherited mutations in this gene disrupt that ability, which increases the risk of ovarian and breast cancer. At the same time, such mutations also make cancer cells more vulnerable to DNA-damaging agents such as cisplatin and carboplatin. While ovarian tumors initially respond very well to platinum-based chemotherapy, eventually between 70 percent and 80 percent of advanced-stage ovarian-cancer patients develop a resistance to these drugs.

“The majority of advanced-stage ovarian-cancer patients die due to acquired resistance to platinum-based drugs. It is a serious problem,” he said.

Taniguchi and colleagues at the Hutchinson Center, University of Washington, Cedars-Sinai Medical Center and the Mayo Clinic have uncovered how such resistance occurs. They found that when exposed to cisplatin, some ovarian-cancer cells develop secondary mutations on their BRCA2 gene that restore the gene’s ability to repair DNA. This restoration of gene function then makes the cancer cells resistant to chemotherapy.

“This event is unlike any previous mechanism of resistance to chemotherapy identified in cancers,” said co-author Elizabeth Swisher, M.D., associate professor of medicine in the Department of Obstetrics and Gynecology and director of the Breast and Ovarian Cancer Prevention Program at the University of Washington. “By identifying the cause of chemotherapy resistance in these cancers, we may be able to better predict who will respond to different chemotherapy agents and find novel ways to re-sensitize tumors to chemotherapy that otherwise would not have had a good response to treatment.”

If women with recurrent ovarian cancer are found to have a secondary mutation on their BRCA2 gene, their cancer likely would be resistant not only to platinum-based compounds but also other drugs such as PARP inhibitors. “Testing whether relapsed tumors have a secondary mutation of BRCA2 may be important to predict clinical outcome,” Taniguchi said.

The researchers suspect they may be able to generalize their findings regarding secondary mutations in BRCA2 to other DNA-repair genes, such as BRCA1, which may help explain drug resistance to a variety of cancers, including those of the breast, prostate and pancreas.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>