Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New finding may help explain development of preeclampsia

12.02.2008
In a study of pregnant women, those with pregnancy-induced high blood pressure were found to have higher levels of a peptide that raises blood pressure in the pieces of tissue linking mother and fetus, according to researchers at Wake Forest University Baptist Medical Center. The finding, reported online in the journal Hypertension, may help explain how the disorder develops.

Preeclampsia, or high blood pressure induced by pregnancy, affects 7 to 10 percent of pregnancies in the United States and is the second-leading cause of maternal mortality. It is the leading cause of pre-term delivery and contributes significantly to stillbirths and death in newborns.

The researchers found that in women with preeclampsia, levels of angiotensin II (Ang II), a hormone that constricts blood vessels and causes blood pressure to rise, was doubled in the chorionic villi, part of the placenta that links mother and fetus and supplies food and oxygen.

“This finding may be part of the preeclampsia puzzle,” said Lauren Anton, a graduate student who is first author on the research. “Anything that gets us closer to understanding this disease is important because there is no treatment and no cure and women are still delivering babies too early.”

The researchers theorize that Ang II may restrict the fetal vessels that lie within the chorionic villi, which not only raises blood pressure, but also lowers oxygen and nutrient flow to the baby and may result in lower birth weight and other complications of preeclampsia.

The study involved 21 women with preeclampsia and 25 women without the disorder. After delivery, tissue sections were taken from the center of the placenta for analysis.

Ang II is part of the renin angiotensin system (RAS) that regulates blood pressure. The system has been shown to play an important role in preeclampsia. However, changes in the system also occur in women who don’t develop the condition. In normal pregnancies, estrogen causes increased levels of several hormones, including Ang II, in the blood. Despite the increase of Ang II in the blood during pregnancy, most women do not develop preeclampsia.

This the first study to demonstrate that all three peptides involved in the RAS are found in the chorionic villi of both normal and preeclamptic women. And, it was the first to show that levels of Ang II are higher in the chorionic villi of women with preeclampsia.

“This implies that local tissues are contributing to the problem,” said K. Bridget Brosnihan, Ph.D., senior researcher, who has been studying preeclampsia for 12 years. “The hormone is remarkably elevated in this relatively small tissue, which implies that it has an important role in the development of preeclampsia.”

The researchers hope that the findings may one day lead to treatment for preeclampsia.

ACE inhibitor drugs are currently used to lower Ang II in non-pregnant women with hypertension, but these drugs cannot be given to pregnant women. The study authors suggest that other therapies aimed at regulating blood pressure might be beneficial if they target the chorionic villi rather than the system as a whole. They are currently working to determine if growth factors that cause the placenta’s blood supply to develop may also be regulated by the increase in Ang II.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>