Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow-motion video study shows shrews are highly sophisticated predators

12.02.2008
Strange as it seems, the smallest mammal
Is the shrew, and not the camel.
And that is all I ever knew,
Or wish to know, about the shrew.
--Ogden Nash

Shrews are tiny mammals that have been widely characterized as simple and primitive. This traditional view is challenged by a new study of the hunting methods of an aquatic member of the species, the water shrew. It reveals remarkably sophisticated methods for detecting prey that allow it to catch small fish and aquatic insects as readily in the dark as in daylight.

It is a skill set that the water shrew really needs. About half the size of a mouse, water shrews have such a high metabolism that they must eat more than their weight daily and can starve to death in half a day if they can’t find anything to eat. As a result, water shrews are formidable predators ounce for ounce.

“Water shrews do much of their hunting at night so I began wondering how they can identify their prey in nearly total darkness,” says Ken Catania, the associate professor of biological sciences at Vanderbilt who headed the study.

Catania teamed up with James Hare and Kevin Campbell at the University of Manitoba and used a high-speed infrared video camera to answer this question. The results of their study are reported in a paper titled “Water shrews detect movement, shape, and smell to find prey underwater” published Jan. 9 in the Proceedings of the National Academy of Sciences.

“Our research confirms that shrews in general, and water shrews in particular, are marvels of adaptation, with specializations and behaviors that put many other mammals to shame,” says Catania.

The researchers needed a high-speed camera because of the water shrew’s lightning-fast reflexes: It can launch an attack in under a 50th of a second of detecting the presence of prey and opens its mouth in preparation to take a bite in a 20th of a second. To determine how the shrews hunt in the dark, the scientists also had to monitor their behavior in the infrared portion of the spectrum, which is beyond the shrew’s visual range.

Their observations revealed that the tiny animals can catch prey just as quickly and efficiently at night as they do during the day and determined that they use three basic methods to do so. Working in darkness, water shrews:

Detect water movements caused when prey animals try to swim away;
Identify the shape of prey species using their whiskers;
Use their sense of smell underwater by blowing air bubbles out of their nose and then re-inhaling them.

Catania had discovered the third of these methods – the shrews’ ability to follow scent trails underwater by exhaling air bubbles and then re-inhaling them – in a 2006 study published in the journal Nature. This ability allows diving water shrews to literally sniff out the general location of underwater prey.

In the current paper, the researchers discovered that the water shrews use two additional methods to zero in on toothsome targets. They use their sensitive whiskers to determine the shape of objects that they encounter. And they are acutely sensitive to sudden water currents like those generated when a fish or insect attempts to swim away.

“This combination of methods poses a serious conundrum for prey,” Catania observes. “If they freeze, they risk detection from touch or olfaction. But, if they try to swim away, they generate water currents that can reveal their location.”

After observing the water shrews’ natural hunting behavior in nearly total darkness, the researchers devised a series of experiments to identify the specific detection methods that the tiny hunters use and to rule out some others.

By recording audible and ultrasonic calls, the researchers were able to rule out the possibility that the tiny shrews use sonar, echolocation or electrical sensitivity (electroreception) to find prey.

To test water shrews’ response to water currents, the researchers equipped a small, glass-bottomed aquarium with several small water jets. They put individual water shrews into the chamber and videotaped their response as they turned different jets on and off. They found that the shrews repeatedly attacked brief, sudden water movements designed to simulate disturbances caused by escaping prey.

To test the water shrews’ ability to identify prey by their shape, Catania and his colleagues created fish-shaped silicon objects, mixed them with similarly sized rectangular and cylindrical pieces of silicon and put them in the aquarium with the shrews. Then they observed as the shrews generally ignored the geometric shaped objects but snapped up the fish-shaped targets after nudging them with their whiskers.

The researchers also determined that motion also triggered attacks, even when the moving targets did not have a realistic fish shape. They created moving targets by inserting a small piece of iron into pieces of silicon and used a magnet placed under the tank to make them move.

“One of the difficulties in doing these experiments was that it doesn’t take the shrews long to figure out that our targets are not real fish. You can only fool them a few times,” Catania reports.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu/exploration/stories/watershrew.html

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>