Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Slow-motion video study shows shrews are highly sophisticated predators

Strange as it seems, the smallest mammal
Is the shrew, and not the camel.
And that is all I ever knew,
Or wish to know, about the shrew.
--Ogden Nash

Shrews are tiny mammals that have been widely characterized as simple and primitive. This traditional view is challenged by a new study of the hunting methods of an aquatic member of the species, the water shrew. It reveals remarkably sophisticated methods for detecting prey that allow it to catch small fish and aquatic insects as readily in the dark as in daylight.

It is a skill set that the water shrew really needs. About half the size of a mouse, water shrews have such a high metabolism that they must eat more than their weight daily and can starve to death in half a day if they can’t find anything to eat. As a result, water shrews are formidable predators ounce for ounce.

“Water shrews do much of their hunting at night so I began wondering how they can identify their prey in nearly total darkness,” says Ken Catania, the associate professor of biological sciences at Vanderbilt who headed the study.

Catania teamed up with James Hare and Kevin Campbell at the University of Manitoba and used a high-speed infrared video camera to answer this question. The results of their study are reported in a paper titled “Water shrews detect movement, shape, and smell to find prey underwater” published Jan. 9 in the Proceedings of the National Academy of Sciences.

“Our research confirms that shrews in general, and water shrews in particular, are marvels of adaptation, with specializations and behaviors that put many other mammals to shame,” says Catania.

The researchers needed a high-speed camera because of the water shrew’s lightning-fast reflexes: It can launch an attack in under a 50th of a second of detecting the presence of prey and opens its mouth in preparation to take a bite in a 20th of a second. To determine how the shrews hunt in the dark, the scientists also had to monitor their behavior in the infrared portion of the spectrum, which is beyond the shrew’s visual range.

Their observations revealed that the tiny animals can catch prey just as quickly and efficiently at night as they do during the day and determined that they use three basic methods to do so. Working in darkness, water shrews:

Detect water movements caused when prey animals try to swim away;
Identify the shape of prey species using their whiskers;
Use their sense of smell underwater by blowing air bubbles out of their nose and then re-inhaling them.

Catania had discovered the third of these methods – the shrews’ ability to follow scent trails underwater by exhaling air bubbles and then re-inhaling them – in a 2006 study published in the journal Nature. This ability allows diving water shrews to literally sniff out the general location of underwater prey.

In the current paper, the researchers discovered that the water shrews use two additional methods to zero in on toothsome targets. They use their sensitive whiskers to determine the shape of objects that they encounter. And they are acutely sensitive to sudden water currents like those generated when a fish or insect attempts to swim away.

“This combination of methods poses a serious conundrum for prey,” Catania observes. “If they freeze, they risk detection from touch or olfaction. But, if they try to swim away, they generate water currents that can reveal their location.”

After observing the water shrews’ natural hunting behavior in nearly total darkness, the researchers devised a series of experiments to identify the specific detection methods that the tiny hunters use and to rule out some others.

By recording audible and ultrasonic calls, the researchers were able to rule out the possibility that the tiny shrews use sonar, echolocation or electrical sensitivity (electroreception) to find prey.

To test water shrews’ response to water currents, the researchers equipped a small, glass-bottomed aquarium with several small water jets. They put individual water shrews into the chamber and videotaped their response as they turned different jets on and off. They found that the shrews repeatedly attacked brief, sudden water movements designed to simulate disturbances caused by escaping prey.

To test the water shrews’ ability to identify prey by their shape, Catania and his colleagues created fish-shaped silicon objects, mixed them with similarly sized rectangular and cylindrical pieces of silicon and put them in the aquarium with the shrews. Then they observed as the shrews generally ignored the geometric shaped objects but snapped up the fish-shaped targets after nudging them with their whiskers.

The researchers also determined that motion also triggered attacks, even when the moving targets did not have a realistic fish shape. They created moving targets by inserting a small piece of iron into pieces of silicon and used a magnet placed under the tank to make them move.

“One of the difficulties in doing these experiments was that it doesn’t take the shrews long to figure out that our targets are not real fish. You can only fool them a few times,” Catania reports.

David F. Salisbury | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>