Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destroying native ecosystems for biofuel crops worsens global warming

08.02.2008
Findings have major implications for climate change policy
Turning native ecosystems into “farms” for biofuel crops causes major carbon emissions that worsen the global warming that biofuels are meant to mitigate, according to a new study by the University of Minnesota and the Nature Conservancy.

The work will be published in Science later this month and will be posted online Thursday, Feb. 7.

The carbon lost by converting rainforests, peatlands, savannas, or grasslands outweighs the carbon savings from biofuels. Such conversions for corn or sugarcane (ethanol), or palms or soybeans (biodiesel) release 17 to 420 times more carbon than the annual savings from replacing fossil fuels, the researchers said. The carbon, which is stored in the original plants and soil, is released as carbon dioxide, a process that may take decades. This “carbon debt” must be paid before the biofuels produced on the land can begin to lower greenhouse gas levels and ameliorate global warming.

The conversion of peatlands for palm oil plantations in Indonesia ran up the greatest carbon debt, one that would require 423 years to pay off. The next worst case was the production of soybeans in the Amazon, which would not “pay for itself” in renewable soy biodiesel for 319 years.

“We don't have proper incentives in place because landowners are rewarded for producing palm oil and other products but not rewarded for carbon management,” said University of Minnesota Applied Economics professor Stephen Polasky, an author of the study. “This creates incentives for excessive land clearing and can result in large increases in carbon emissions.

“This research examines the conversion of land for biofuels and asks the question ‘Is it worth it"’,” said lead author Joe Fargione, a scientist for The Nature Conservancy. “And surprisingly, the answer is no.”

Fargione began the work as a University of Minnesota postdoctoral researcher with Polasky, Regents Professor of Ecology David Tilman; he completed it after joining the Nature Conservancy. They, along with university researchers Jason Hill and Peter Hawthorne, also contributed to the work.

“If you’re trying to mitigate global warming, it simply does not make sense to convert land for biofuels production,” said Fargione. “All the biofuels we use now cause habitat destruction, either directly or indirectly. Global agriculture is already producing food for six billion people. Producing food-based biofuel, too, will require that still more land be converted to agriculture.”

These findings coincide with observations that increased demand for ethanol corn crops in the United States is likely contributing to conversion of the Brazilian Amazon and Cerrado (tropical savanna). American farmers traditionally rotated corn crops with soybeans, but now they are planting corn every year to meet the ethanol demand and Brazilian farmers are planting more of the world’s soybeans. And they’re deforesting the Amazon to do it.

The researchers also found significant carbon debt in the conversion of grasslands in the United States and rainforests in Indonesia.

Researchers did note that some biofuels do not contribute to global warming because they do not require the conversion of native habitat. These include waste from agriculture and forest lands and native grasses and woody biomass grown on marginal lands unsuitable for crop production. The researchers urge that all fuels be fully evaluated for their impacts on global warming, including impacts on habitat conversion.

“Biofuels made on perennial crops grown on degraded land that is no longer useful for growing food crops may actually help us fight global warming,” said Hill. “One example is ethanol made from diverse mixtures of native prairie plants. Minnesota is well poised in this respect.”

“Creating some sort of incentive for carbon sequestration, or penalty for carbon emissions, from land use is vital if we are serious about addressing this problem,” Polasky said.

“We will need to implement many approaches simultaneously to solve climate change. There is no silver bullet, but there are many silver BBs,” said Fargione. “Some biofuels may be one silver BB, but only if produced without requiring additional land to be converted from native habitats to agriculture.”

Patty Mattern | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>