Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows a daily does of beetroot juice can beat high blood pressure

07.02.2008
Researchers at Barts and The London School of Medicine have discovered that drinking just 500ml of beetroot juice a day can significantly reduce blood pressure. The study, published online today in the American Heart Association journal Hypertension, could have major implications for the treatment of cardiovascular disease.

Lead by Professor Amrita Ahluwalia of the William Harvey Research Institute at Barts and The London School of Medicine, and Professor Ben Benjamin of Peninsula Medical School, the research reveals that it is the ingestion of dietary nitrate contained within beetroot juice - and similarly in green, leafy vegetables - which results ultimately in decreased blood pressure. Previously the protective effects of vegetable-rich diets had been attributed to their antioxidant vitamin content.

Professor Ahluwalia and her team found that in healthy volunteers blood pressure was reduced within just 1 hour of ingesting beetroot juice, with a peak drop occurring 3-4 hours after ingestion. Some degree of reduction continued to be observed until up to 24 hours after ingestion. Researchers showed that the decrease in blood pressure was due to the chemical formation of nitrite from the dietary nitrate in the juice. The nitrate in the juice is converted in saliva, by bacteria on the tongue, into nitrite. This nitrite-containing saliva is swallowed, and in the acidic environment of the stomach is either converted into nitric oxide or re-enters the circulation as nitrite. The peak time of reduction in blood pressure correlated with the appearance and peak levels of nitrite in the circulation, an effect that was absent in a second group of volunteers who refrained from swallowing their saliva during, and for 3 hours following, beetroot ingestion.

More than 25 per cent of the world’s adult population are hypertensive, and it has been estimated that this figure will increase to 29 per cent by 2025. In addition, hypertension causes around 50 per cent of coronary heart disease, and approximately 75 per cent of strokes. In demonstrating that nitrate is likely to underlie the cardio-protective effect of a vegetable-rich diet, the research of Professor Ahluwalia and her colleagues highlights the potential of a natural, low cost approach for the treatment of cardiovascular disease – a condition that kills over 110,000 people in England every year.

Professor Ahluwalia said: " Our research suggests that drinking beetroot juice, or consuming other nitrate-rich vegetables, might be a simple way to maintain a healthy cardiovascular system, and might also be an additional approach that one could take in the modern day battle against rising blood pressure’.

Alex Fernandes | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>