Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poxvirus Potency Uncovered in New Atomic Map

05.02.2008
Scientists at the University of Alabama at Birmingham (UAB) and Saint Louis University used X-ray crystallography to uncover new details about the infectious potency of poxviruses, furthering the understanding of how viral infections can subvert the body’s immune system.

Having high-resolution detail of this protein on hand will speed the discovery of new drugs to combat inflammation and immune diseases such as atherosclerosis and rheumatoid arthritis, the researchers said.

The findings are published in the online edition of the journal Proceedings of the National Academy of Sciences and will soon appear in a print edition.

“Now we have a visual blueprint to guide our future studies on interferon-gamma binding protein, which one day may be used to prevent inflammatory disease,” said Mark R. Walter, Ph.D., an associate professor in the UAB Department of Microbiology and senior author on the study.

Interferon-gamma binding protein (IFN-y) is notorious for the role it plays in helping poxviruses replicate. Normally when a virus enters the bloodstream, the immune system fights back by producing IFN-y, which tells surrounding cells to fight the infection.

Remarkably, somewhere during the evolution of the poxvirus, it captured an IFN-y gene from its host and incorporated some of the protein structure into its own. As a result poxvirus has a very efficient “blocker” of the IFN-y antiviral response, Walter said.

The new study shows this blocking ability through crystallography, the science of mapping the atomic structure of molecules by looking at their interaction with an X-ray beam.

Poxviruses include many classes of the invasive organism, including smallpox, cowpox and monkeypox. Smallpox in particular has played a tragic role in human history: estimates show it caused between 300 million and 500 million deaths in the 20th Century.

Smallpox was declared officially eradicated in 1979, but other poxviruses remain a health threat.

“The damage that the smallpox virus has done to mankind is horrific and enormous, which is why we think it’s so important to understand more about the poxviruses and how they operate,” said Mark Buller, Ph.D., professor of microbiology and immunology at the Saint Louis University School of Medicine and a study author. “The more knowledge we have, the better we should be able to cope with other major viruses and diseases in the future.”

The research was funded by grants from the National Institutes of Health and the American Heart Association.

Troy Goodman | EurekAlert!
Further information:
http://www.uab.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>