Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakdown of kidney's ability to clean its own filters likely causes disease

31.01.2008
The kidney actively cleans its most selective filter to keep it from clogging with blood proteins, scientists from Washington University School of Medicine in St. Louis reveal in a new study.

Researchers showed that breakdown of this self-cleaning feature can make kidneys more vulnerable to dysfunction and disease.

"We speculate that defects of this clearance mechanism can leave things on the filter that can damage it," says senior author Andrey Shaw, M.D., Emil R. Unanue Professor of Immunobiology in Pathology and Immunology. "This could include autoimmune antibodies that mistakenly target the body's own tissues like those that occur in the disease lupus."

The study appears in the Jan. 22 Proceedings of the National Academy of Sciences.

Despite extensive knowledge of the structure of the kidney, several scientific controversies linger over how the organ does its complicated and essential job of filtering wastes from the blood for disposal without simultaneously discarding too much water or key blood proteins in the urine. Understanding how these tricky tasks are accomplished is essential to developing new treatments for kidney disease and renal failure, which are among the top ten causes of death in the United States.

Like many mechanical filtering systems, the kidney passes the blood through a series of progressively finer screens. After passing through a structure known as the glomerular basement membrane (GBM), fluid and serum proteins must finally pass through the most selective filter of the kidney, which is comprised of specialized epithelial cells called podocytes. These cells form a web-like barrier to the passage of large serum proteins into the urine.

"The kidney screens 150 to 200 liters of blood daily, and we were curious as to how the kidney keeps the filter from clogging up," says first author Shreeram Akilesh, an M.D./Ph.D. student. "The two most common blood serum and plasma proteins are albumin, which helps regulate blood volume and convey a number of different substances around the body, and immunoglobin G (IgG), a type of immune system antibody. Because they're so common, we figured they would be among the most likely to get stuck on the filter, and set out to look for proteins that help clear them."

Researchers looked for proteins made in podocytes that could bind to albumin and IgG, reasoning that such proteins likely provide the "handles" the podocytes need to grab proteins and clear them from the filter.

A protein known as FcRn was high on the list of likely suspects. Akilesh had studied FcRn previously in the laboratory of coauthor Derry C. Roopenian, Ph.D., professor at the Jackson Laboratory in Bar Harbor, Maine. Prior research there and in other laboratories had revealed that FcRn binds to both IgG and albumin and is present in human podocytes.

After confirming that the FcRn protein also is made in mouse podocytes, scientists then asked if FcRn was responsible for clearing IgG antibody from the filter. To do this, they measured the retention of a radioactive tracer in the kidneys of normal mice and in mice where the gene for FcRn had been disabled. Mice lacking FcRn had difficulty clearing antibody from the kidney.

When researchers studied the mice lacking FcRn for longer periods of time, they saw evidence that antibodies were accumulating in the kidney.

In another experiment, researchers gave the mice injections of large quantities of protein to saturate the clearance system. They followed those injections with what would normally have been a harmlessly small dose of an antibody potentially toxic to the kidney. The mice developed kidney damage as a result. Researchers believe this was because they couldn't clear the toxic antibody from the GBM quickly enough.

"This is the first clear demonstration that the filter system in the kidney isn't just a passive mechanical filter, it's actually involved in its own maintenance," says Akilesh. "It also provides us with a nice mechanism for explaining how the normal function of this filter may be breaking down in ways that leads to kidney disease and damage."

To follow up, Shaw plans to look for other podocyte proteins involved in filter clearance.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>