Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing fashions govern mating success in lark buntings

28.01.2008
A study of how female lark buntings choose their mates, published this week in Science, adds a surprising new twist to the evolutionary theory of sexual selection. Researchers at the University of California, Santa Cruz, discovered that female lark buntings show strong preferences for certain traits in the males, but those preferences change from year to year.

Classic examples of sexual selection involve elaborate ornaments, such as the peacock's tail, that evolve as a result of consistent female preferences, so that males with the most exaggerated traits have the most success mating and produce more offspring than less flamboyant competitors. In the case of lark buntings, however, the flexibility shown by females in choosing their mates dampens the trend toward more elaborate ornamentation and may instead maintain variability in male plumage.

"It's counter to the conventional view of female choice as static," said Bruce Lyon, associate professor of ecology and evolutionary biology at UCSC and coauthor of the paper. "These females are capable of very sophisticated behavior, and they appear to benefit from their flexibility in mate choice by gaining enhanced nesting success."

The study suggests that the male's plumage somehow serves as a signal to the female that he possesses certain traits that will affect the pair's nesting success. Shifting environmental conditions may determine which male traits matter most in any given year, said Alexis Chaine, who worked on the study as a UCSC graduate student and is now a postdoctoral researcher at the Centre National de la Recherche Scientifique (National Center for Scientific Research) in France. Chaine is first author of the paper, which appears in the January 25 issue of Science.

"The traits the female is choosing somehow predict how successful the pair will be in nesting," Chaine said. "One possibility is that certain traits are associated with the male being a good forager, and other traits predict how well he could defend the nest from predators. So, if there are lots of ground squirrels, which are a major nest predator, she wants a good defender, but in a year when grasshopper populations are low, she needs a good provider. These are ideas we still need to test."

With a mostly black body and bright white wing patches, the male lark bunting is a distinctive bird of the Great Plains. Females choose a new mate every year, and parenting duties are shared by both members of the pair. The males are territorial during the breeding season, flying up over their territory and singing as they descend to attract a mate. Once they acquire a mate, however, they no longer defend the territory. The researchers found no correlation between the quality of a male's territory and his success in attracting a mate.

The white wing patches and other male plumage traits serve as signals in aggressive interactions between territorial males, Chaine said, meaning that female mate choice is not the only factor influencing those traits. But the researchers found that the role of those signals in competitive interactions between males was consistent from year to year. The level of aggression didn't vary between years either.

"Male competition can't explain the overall pattern, but it may be an important factor in the evolution of male plumage traits," Chaine said.

The variability of the male plumage was one of the first things Lyon noticed when he began studying lark buntings on the Pawnee National Grasslands in Colorado. (The lark bunting is the state bird of Colorado.) Chaine joined Lyon the following year and began an exhaustive long-term study, gathering data from 1999 to 2003.

"We had to conduct studies every year over several years before we could see what was going on," Lyon said. "We saw two patterns of variation in the correlations between male traits and female mate choice. In some cases, it was either on or off--a trait was important to females one year and not important in other years. We also saw reversals--for example, one year the females preferred males with bigger wing patches, and the next year they preferred smaller wing patches."

Lyon cautioned that additional experiments are needed to provide definitive evidence of female preferences. The study was based on statistical correlations, which provide clear evidence that the traits of mated males differ from those of males without mates. "We suspect it's because females are choosing males with particular traits," Lyon said. "Ideally, we would like to test that with field experiments."

The dynamic sexual selection seen in lark buntings is probably occurring in other species as well, he added. That has implications for theoretical models of how sexual selection influences the evolution of male traits.

"The assumption that sexual selection is static is something we've all taken for granted," Chaine said. "This study might cause some people to rethink their systems and take another look at their data."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>