Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cars Warm Up, Ships Cool Down

25.01.2008
Road traffic is by large the transport sector that contributes the most to global warming. Aviation has the second largest warming effect, while shipping has a net cooling effect on the earth’s climate, according to a study published recently.

The study, “Climate forcing from the transport sectors”, is the first comprehensive analysis of the climate effect from the transport sector as a whole on a global scale. Breaking down the transport sector to four subsectors: road transport, aviation, rail, and shipping, five researchers at CICERO have calculated each subsector’s contribution to global warming. The researchers have looked at the radiative forcing (RF) caused by transport emissions. The RF describes the warming effect in the unit Watt per square meter (W/m2).

The study that was published in the prestigious publication, Proceedings of the National Academy of Sciences (PNAS), concludes that since preindustrial times, 15% of the RF caused by man-made CO2-emissions have come from the transport sector. The study also looks at other emissions. For ozon (O3), transport can be blamed for ca 30% of the forcing caused by man-made emissions.

The study implies that more attention needs to be put on the fast growing road sector. Looking solely at CO2 emissions, road traffic alone has led to two-thirds of the warming caused by total transport emissions (this is using a historical perspective looking at emissions since pre-industrial times.)

Including all gasses, not just CO2, and looking at the effect today’s road emissions has on future climate, the share is even larger: the road emissions of today will constitute three- fourth of the warming caused by transport over the next hundred years.

For shipping, the picture is more complicated. Until today, shipping has had a cooling effect on climate. This is because shipping emits large portions of the gasses SO2 and NOx, which both have cooling effects. However, although these two gases, until now, have given the shipping industry a cooling effect, this effect will diminish after a while, as the gases don’t live long in the atmosphere. After a few decades, the long-lived CO2 will dominate, giving shipping a warming effect in the long run.

The net cooling effect from shipping does not imply that shipping emissions don’t need to be cut back on. Both SO2 and NOx have other impacts that damage the environment.

A remark can be made here saying that SO2 and NOx are not covered by the Kyoto Protocol; neither is black carbon (soot). Therefore, the Protocol is too narrow to capture the real climate effect of transport emissions, particularly for the shipping sector.

Following road transport, aviation is the second largest transport contributor to global warming. The reason that road transport tops the list is mainly the amount of vehicles on the roads and the smaller cooling effect from their emissions. The researchers have not yet looked at emissions per kilometre or per person at a certain distance using different transport modes.

Also, aviation has a strong contribution to global warming. However, the historical contribution from aviation emissions to global warming is more than doubled by the contribution from road emissions. Over the next 100 years, today’s road emissions will have a climate effect that is four times higher than the climate effect from today’s aviation emissions.

The warming effect by rail emissions is very small, almost not noticable at all, compared to the effects from road transport and aviation.

In general, the transport sector’s contribution to global warming will be continously high in the future. The current emissions from transport are responsible for approximately 16% of the net radiative forcing over the next 100 years. The dominating contributor to this warming is CO2, followed by tropospheric O3.

Reference:
Jan Fuglestvedt, Terje Berntsen, Gunnar Myhre, Kristin Rypdal, and Ragnhild Bieltvedt Skeie. "Climate Forcing from the Transport Sectors", PNAS 10.1073/pnas.0702958104, 7 January 2008.

Petter Haugneland | alfa
Further information:
http://www.cicero.uio.no/webnews/index_e.aspx?id=10931

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>