Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deficient "fire regulators" in the immune system responsible for type 1 diabetes

24.01.2008
The main regulators of the immune system, called CD4+Treg cells, are thought to be highly involved in a large range of immune diseases.

The gradual reduction in their regulating capacity seems to play a critical role in the onset of type 1 diabetes, as demonstrated in the latest study by Dr. Ciriaco Piccirillo, a researcher in the Department of Microbiology and Immunology at the Research Institute of the McGill University Health Centre and the principal investigator for this project. This study was published this month in the journal Diabetes.

The immune system needs to be regulated so that it attacks only the site of an inflammation and focuses its attack on pathogens rather than on the body tissues, causing an autoimmune disease.

In a healthy patient, CD4+Treg cells deactivate any T lymphocytes, a type of immune cell, that are misprogrammed and could attack the body. Dr Piccirillo's research indicates that in type 1 diabetic patients this control mechanism may be deficient, thereby allowing the misprogrammed T lymphocytes to proliferate and gain the ability to destroy the insulin-producing cells of the pancreas. This leads to type 1 diabetes.

"We have been able to demonstrate this in mice with type 1 diabetes, and other genetic studies have shown that this same mechanism is applicable to humans," explained Dr. Piccirillo. Dr Piccirillo is an assistant professor at the McGill University, and the Canada Research Chair in Regulatory Lymphocytes of the Immune System. "Furthermore, the predominant role of nTreg cells leads us to believe that they are also involved in other autoimmune pathologies. Finding this common denominator among diseases that were previously thought to be unrelated is a very promising avenue for future study", he adds.

Although the mechanism of action of CD4+Treg cells has not yet been completely unravelled, the scientific community generally accepts that this mechanism is of crucial importance to the entire immune system. Major fundamental and applied research efforts are currently being directed down this path and aim to clarify the role of CD4+Treg cells in order to develop innovative cellular therapies that could restore immune stability in patients.

"The eventual hope is to treat the cause of type 1 diabetes and other autoimmune diseases and not just their symptoms, as we do today", says Dr Piccirillo.

This study was funded by the Canadian Institutes of Health Research and the Canadian Diabetes Association.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

Isabelle Kling | RI MUHC
Further information:
http://www.muhc.ca/research

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>