Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies highlight MRSA evolution and resilience

22.01.2008
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are caused primarily by a single strain—USA300—of an evolving bacterium that has spread with “extraordinary transmissibility” throughout the United States during the past five years, according to a new study led by National Institutes of Health (NIH) scientists. CA-MRSA, an emerging public health concern, typically causes readily treatable soft-tissue infections such as boils, but also can lead to life-threatening conditions that are difficult to treat.

The study, from the National Institute of Allergy and Infectious Diseases (NIAID) of NIH, resolves debate about the molecular evolution of CA-MRSA in the United States. The findings rule out the previously held possibility that multiple strains of USA300, the most troublesome type of CA-MRSA in the United States, emerged randomly with similar characteristics. The study also offers a hypothesis for the origin of previous S. aureus outbreaks, such as those caused by penicillin-resistant strains in the 1950s and 1960s.

A second study led by the same NIAID scientists takes the issue of the evolution of MRSA a step further, revealing new information about how MRSA bacteria in general, including the USA300 group, elude the human immune system.

The first study, which appears online this week in the Proceedings of the National Academy of Sciences, found that the USA300 group of CA-MRSA strains, collectively called the epidemic strain, comprises nearly identical clones that have emerged from a single bacterial strain. It is the first time scientists have used comparative genome sequencing to reveal the origins of epidemic CA-MRSA. Frank R. DeLeo, Ph.D., at NIAID’s Rocky Mountain Laboratories (RML) in Hamilton, Mont., led the research.

“Scientists are pressing ahead quickly to learn more about how some MRSA strains evade the immune system and spread rapidly,” says NIAID Director Anthony S. Fauci, M.D. “The information presented in these two studies adds important new insights to that expanding knowledge base.”

To understand how CA-MRSA is evolving in complexity and spreading geographically, Dr. DeLeo’s group sequenced the genomes of 10 patient samples of the USA300 bacterium recovered from individuals treated at different U.S. locations between 2002 and 2005. They then compared these genomes to each other and to a baseline USA300 strain used in earlier studies. Eight of the 10 USA300 patient samples were found to have nearly indistinguishable genomes, indicating they originated from a common strain. The remaining two bacteria were related to the other eight, but more distantly.

Interestingly, of the eight nearly indistinguishable USA300 patient samples, two caused far fewer deaths in laboratory mice than the others, highlighting an emerging view that tiny genetic changes among evolving strains can profoundly affect disease severity and the potential for drug resistance to develop.

“The USA300 group of strains appears to have extraordinary transmissibility and fitness,” says Dr. DeLeo. “We anticipate that new USA300 derivatives will emerge within the next several years and that these strains will have a wide range of disease-causing potential.” Ultimately, Dr. DeLeo and his colleagues hope that the work will lead to the development of new diagnostic tests that can quickly identify specific strains of MRSA.

Fred C. Tenover, Ph.D., of the Centers for Disease Control and Prevention in Atlanta (CDC) contributed the 10 USA300 clinical isolates from CDC’s Active Bacterial Core Surveillance system. Other study collaborators included Barry N. Kreiswirth, Ph.D., of the International Center for Public Health (ICPH) in Newark, N.J., and James M. Musser, M.D., Ph.D., of The Methodist Hospital Research Institute in Houston.

The second report, which involved scientists from RML, ICPH and Vanderbilt University Medical Center in Nashville, was recently published online in the Journal of Immunology. This study provides scientists with new details about the complex mechanisms MRSA uses to avoid destruction by neutrophils, human white blood cells that ingest and destroy microbes. When exposed to hydrogen peroxide, hypochlorous acid (the active component of household bleach) or antimicrobial proteins—all killer chemicals released by neutrophils—MRSA senses danger, escapes harm and turns the tables on the white blood cells, destroying them. Work is continuing in Dr. DeLeo’s lab to understand how the bacterium senses and survives attacks by neutrophils.

Ken Pekoc | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>