Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer stem cell marker also drives transcription in normal cells

21.01.2008
New research links the recently discovered function of a multi-faceted transcriptional complex to control of gene expression in both normal cells and cancer stem cells. Two separate studies, published by Cell Press in the January 18th issue of Molecular Cell, provide insight into novel subunits associated with an evolutionarily conserved transcriptional regulatory complex and reveal a previously undescribed chromatin function that is required for full activity of nuclear receptors in normal cells and for the MYC oncoprotein in tumor cells.

Initiation of transcription requires sophisticated coordination of many different regulatory factors. Coactivators are multi-subunit complexes that facilitate transcription initiation directly, by interacting with RNA polymerase and general transcription factors, or indirectly, by influencing chromatin. For example, histone acetyltransferase (HAT) complexes are thought to activate gene expression by modifying chromatin-associated proteins called histones which function like spools for DNA to wind around.

The yeast SAGA complex and the homologue metazoan TFTC/STAGA, also called hSAGA, are HAT-containing complexes that facilitate access of general transcriptional factors to DNA through histone acetylation. Although hSAGA is thought to be a homologue of the well-studied yeast SAGA complex, its subunit composition and functions are not as well understood. Dr. Didier Devys from the Institute de Génétique et de Biologie Moléculaire et Cellulaire in Strasbourg, France and colleagues identified three novel subunits, ATXN7L3, USP22 and ENY2, that are homologues of previously described subunits in the yeast SAGA complex.

The researchers demonstrated that the newly identified subunits work together to remove the ubiquitin moiety from monoubiquitylated histone H2B, similarly to what has been previously described in yeast, but also remove the ubiquitin moiety from monoubiquitylated histone H2A. The latter modification is not found in yeast but is more prevalent than monoubiquitylated H2B in mammals. Importantly, the deubiquitylation module of the Drosophila TFTC/STAGA complex was an enhancer of position effect variegation and counteracted heterochromatin silencing while both the Drosophila and the human deubiquitylation module were shown to be required for full transcriptional activation by the androgen receptor. This finding is clinically significant as androgen receptor activity is often deregulated in prostate cancer.

“The association of both HAT and deubiquitylation activities in the hSAGA complex provide an attractive mechanism by which the so called “cross-talk” between given histone marks is coordinated within the same regulatory complex” says Dr. Devys. “Further mechanistic studies are essential to examine the exact link between these activities and other chromatin modifying complexes to understand how these sequential events participate in chromatin remodeling and gene activation.”

Working in parallel, a second research group led by Dr. Steven B. McMahon from Thomas Jefferson University’s Kimmel Cancer Center in Philadelphia also identified USP22 as a member of hSAGA. Previous work had identified USP22 as part of an eleven gene cancer stem cell signature that accurately distinguished patients whose tumors would eventually metastasize from those whose tumors would remain localized. “Unlike the other genes in this cancer stem cell signature, no direct mechanistic link to human cancer has been ascribed to USP22,” explains Dr. McMahon. McMahon’s group demonstrated that USP22 is required for activation of target gene transcription by the MYC oncoprotein and that USP22 depletion compromises MYC functions, including transformation of mammalian cells, and leads to cell cycle arrest.

Taken together, these results significantly advance the understanding of mechanisms that permit fine-tuning of transcriptional regulation by revealing that the hSAGA histone acetyltransferase complex is also capable of histone deubiquitylation. The findings provide critical new information about the importance of the timing and sequence of chromatin modifications in the control of gene expression in normal cells and shed light on the biochemical function of cancer stem cell marker and hSAGA subunit USP22, identifying it as a potential therapeutic target.

Cathleen Genova | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>