Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Military Technique Could Aid Stroke Victims

18.01.2008
University of Leicester researchers are pioneering use of military radar signal processing methods to help victims of stroke – the third most common cause of death in the UK.

The Leicester study has discovered that techniques used in radar systems can be modified and have the potential to improve early diagnosis and effective monitoring of stroke victims.

Research by Joanne Cowe in the University’s Medical Physics group led to the breakthrough which offers huge potential to deliver benefits to patients.

Joanne said: “Stroke is the third most common cause of death and the most common cause of adult disability in the UK and is estimated to cost the NHS over £2.3 billion per year. One quarter of strokes are due to emboli (blood clots or other foreign bodies) blocking small blood vessels in the brain. Emboli can originate from a number of sources such as the heart or from plaques in arteries in the head or neck due to vascular disease.

“Doppler ultrasound can be used for the detection of emboli in the cerebral circulation and can also be used to monitor the blood flow through vessels to assess if there are any problems such as blockages. Therefore, research into the detection of emboli and vascular disease, using ultrasound, has the potential to reduce stroke death and disability rates, and to generate large financial savings.”

Joanne graduated with a Masters in Electrical and Electronic Engineering before going on to work as a military systems engineer. She then went on to undertake a PhD as part of the University of Leicester’s Medical Physics group. In her PhD she investigated how radar techniques could improve the operation of medical ultrasound devices. In particular she looked at how these technologies could be used to detect and monitor the blood clots or other foreign bodies travelling through blood vessels in the brain which can lead to strokes.

Joanne will be presenting the findings of her Ph.D. research at a doctoral inaugural lecture on Wednesday 6th February. In this lecture she will explain how she investigated new methods of processing the ultrasound signal so as to obtain additional information. In particular she will be describing how techniques used in radar systems can be modified and utilised in a Doppler ultrasound system to improve the resolution, thereby providing more detailed information about the depths at which movement is occurring. This has the potential to aid in the early diagnosis and also in the monitoring of progression of vascular disease.

The second doctoral inaugural lecture will take place on Wednesday 6th February at 5.30pm in Ken Edwards Lecture Theatre 3. In addition to Joanne Cowe it will also feature Carolyn Tarrant (School of Psychology) talking about her research on “Trust Me I’m A Doctor”. Please email pgevents@le.ac.uk for further information or if you wish to attend.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>