Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study may shed light on protein-drug interactions

17.01.2008
Proteins, the biological molecules that are involved in virtually every action of every organism, may themselves move in surprising ways, according to a recent study from the U.S. Department of Energy's Argonne National Laboratory that may shed new light on how proteins interact with drugs and other small molecules.

This study, which relied on the intense X-ray beams available at Argonne's Advanced Photon Source, uses a new approach to characterize the ways in which proteins move around in solution to interact with other molecules, including drugs, metabolites or pieces of DNA.

"Proteins are not static, they're dynamic," said Argonne biochemist Lee Makowski, who headed the project. "Part of the common conception of proteins as rigid bodies comes from the fact that we know huge amounts about protein structures but much less about how they move."

The study of proteins had long focused almost exclusively on their structures, parts of which can resemble chains, sheets or helices. To determine these, scientists use high-energy X-rays to take snapshots of proteins frozen in a single conformation within a highly ordered crystal. However, biologists had made relatively little progress in using these pictures to show how proteins can reconfigure themselves in different environments.

While scientists had expected proteins to behave similarly in regions of high and low protein concentration – from as high as 30 percent protein to less than 1 percent protein, respectively – they instead found that proteins had a much larger range of motion and could contort themselves into many more configurations in the dilute solutions. "The difference is comparable to skipping through an open field or being crammed into a crowded elevator," Makowski said.

For more than a century, the standard model of protein behavior depicted them as inflexible "locks" that could interact only with a small set of equally rigid molecular "keys." Even today's introductory biology courses rely on descriptions of protein behavior that require them to swivel and pivot very little as they interact with other biological molecules, according to Makowski. "That's a very powerful image but it's not the whole story," he said. "We've learned that proteins in solution can take on an entire ensemble of slightly different structures and that, for most proteins, this ensemble grows much larger as you go to lower and lower concentrations."

Makowski and his colleagues were also surprised to discover that environmental conditions strongly influence which state in this "ensemble" of conformations a protein prefers to enter. Most of a protein's common configurations have a functional purpose, he said, as it is "not likely to twist itself into something completely irrelevant to its function."

For example, one of the five proteins examined in the study, hemoglobin, has two favored conformations: one in which it binds oxygen very readily and one in which it does not. When hemoglobin is placed in a solution that contains a great deal of available oxygen, it spends most of the time in the former state, but when oxygen is not easily accessible, it usually flips into the latter. "We now know that in dilute solutions, hemoglobin can actually take on both conformations — even in the absence of oxygen," he added.

By keeping all of the environmental factors the same save for the protein concentration in the solution, Makowski and his team discovered another surprising result. Scientists had known for many years that when proteins are too concentrated, they aggregate and fall out of solution. However, biochemists previously had difficulty explaining why a similar effect also occurs in overly dilute solutions.

Proteins have hydrophobic – or "water-hating" – core regions that try to avoid touching water if at all possible. Because of this characteristic, proteins will rearrange themselves to protect these regions from coming into contact with water. In dilute solutions, however, Makowski's team discovered that proteins fluctuate far more than in concentrated solutions, and these fluctuations expose the proteins' hydrophobic core, making them more likely to stick to one another or to the container walls.

The results of the research appear in the January 11 issue of the Journal of Molecular Biology.

Argonne National Laboratory, a renowned R&D center, brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Steve McGregor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>