Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study may shed light on protein-drug interactions

17.01.2008
Proteins, the biological molecules that are involved in virtually every action of every organism, may themselves move in surprising ways, according to a recent study from the U.S. Department of Energy's Argonne National Laboratory that may shed new light on how proteins interact with drugs and other small molecules.

This study, which relied on the intense X-ray beams available at Argonne's Advanced Photon Source, uses a new approach to characterize the ways in which proteins move around in solution to interact with other molecules, including drugs, metabolites or pieces of DNA.

"Proteins are not static, they're dynamic," said Argonne biochemist Lee Makowski, who headed the project. "Part of the common conception of proteins as rigid bodies comes from the fact that we know huge amounts about protein structures but much less about how they move."

The study of proteins had long focused almost exclusively on their structures, parts of which can resemble chains, sheets or helices. To determine these, scientists use high-energy X-rays to take snapshots of proteins frozen in a single conformation within a highly ordered crystal. However, biologists had made relatively little progress in using these pictures to show how proteins can reconfigure themselves in different environments.

While scientists had expected proteins to behave similarly in regions of high and low protein concentration – from as high as 30 percent protein to less than 1 percent protein, respectively – they instead found that proteins had a much larger range of motion and could contort themselves into many more configurations in the dilute solutions. "The difference is comparable to skipping through an open field or being crammed into a crowded elevator," Makowski said.

For more than a century, the standard model of protein behavior depicted them as inflexible "locks" that could interact only with a small set of equally rigid molecular "keys." Even today's introductory biology courses rely on descriptions of protein behavior that require them to swivel and pivot very little as they interact with other biological molecules, according to Makowski. "That's a very powerful image but it's not the whole story," he said. "We've learned that proteins in solution can take on an entire ensemble of slightly different structures and that, for most proteins, this ensemble grows much larger as you go to lower and lower concentrations."

Makowski and his colleagues were also surprised to discover that environmental conditions strongly influence which state in this "ensemble" of conformations a protein prefers to enter. Most of a protein's common configurations have a functional purpose, he said, as it is "not likely to twist itself into something completely irrelevant to its function."

For example, one of the five proteins examined in the study, hemoglobin, has two favored conformations: one in which it binds oxygen very readily and one in which it does not. When hemoglobin is placed in a solution that contains a great deal of available oxygen, it spends most of the time in the former state, but when oxygen is not easily accessible, it usually flips into the latter. "We now know that in dilute solutions, hemoglobin can actually take on both conformations — even in the absence of oxygen," he added.

By keeping all of the environmental factors the same save for the protein concentration in the solution, Makowski and his team discovered another surprising result. Scientists had known for many years that when proteins are too concentrated, they aggregate and fall out of solution. However, biochemists previously had difficulty explaining why a similar effect also occurs in overly dilute solutions.

Proteins have hydrophobic – or "water-hating" – core regions that try to avoid touching water if at all possible. Because of this characteristic, proteins will rearrange themselves to protect these regions from coming into contact with water. In dilute solutions, however, Makowski's team discovered that proteins fluctuate far more than in concentrated solutions, and these fluctuations expose the proteins' hydrophobic core, making them more likely to stick to one another or to the container walls.

The results of the research appear in the January 11 issue of the Journal of Molecular Biology.

Argonne National Laboratory, a renowned R&D center, brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Steve McGregor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>