Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomic profiling shown more accurate than traditional biomarkers in identifying liver cancer

17.01.2008
As the incidence of liver cancer continues to grow-- fueled in large part, by rising rates of hepatitis C infections – so too does the need for tests to help diagnose the disease at an earlier stage.

A study appearing in the January 15 issue of Clinical Cancer Research demonstrates that a novel mass-spectrometry based form of proteomic profiling is more accurate than traditional biomarkers in distinguishing liver cancer patients from patients with hepatitis C liver cirrhosis, particularly with regard to identifying patients with small, curable tumors. Led by researchers at Beth Israel Deaconess Medical Center (BIDMC), the study could help lead to earlier diagnostic methods – and subsequent treatments -- for liver cancer.

“Proteomics represents a potentially powerful tool for the serologic recognition of protein profiles associated with cancer,” explains co-senior author Towia Libermann, PhD, Director of the Genomics Center at BIDMC and Associate Professor of Medicine at Harvard Medical School.

“Although this particular proteomics technology, SELDI-TOF MS [surface enhanced laser desorption/ionization time of flight mass spectrometry] had already proven capable of identifying liver cancer in some limited studies, this was the first time that the technology was compared side-by-side with the clinical standard biomarker in a cohort of patients at risk for developing the disease,” adds Liebermann, who is also Director of the Dana-Farber/Harvard Cancer Center Proteomics Core in the Division of Interdisciplinary Medicine and Biotechnology at BIDMC.

Over a single decade, the incidence of liver cancer (hepatocellular carcinoma) increased from 1.8 to 2.5 per 100,000 patients, in large part due to a rise in the spread of hepatitis C virus.

“Hepatitis C has become a tremendous public health problem,” explains co-senior author Nezam Afdhal, MD, Director of the Liver Center at BIDMC and Associate Professor of Medicine at Harvard Medical School. “And a significant number of hepatitis C-infected patients will go on to develop liver cirrhosis.” Cirrhosis results when healthy tissue is replaced by scar tissue, preventing the liver from properly functioning. Cirrhosis itself is responsible for more than 25,000 deaths each year. But, adds Afdhal, secondarily, cirrhosis greatly increases a person’s chances of developing liver cancer.

“Each year, cirrhosis patients have a two to five percent chance that their condition will escalate to cancer,” he explains. “And the problem is that, right now, there is no reliable means of detecting liver cancer at an early stage, when surgical treatment is an option. Typically by the time the disease is discovered, the cancer has advanced and treatment options become much more limited.”

The best hope for early detection is cancer biomarkers, serum proteins found in altered amounts in blood or other body fluids. The current biomarker for liver cancer in clinical use is alpha fetoprotein (AFP). In many cases, patients with hepatitis C undergo routine monitoring for AFP levels as an indicator of whether tumors may have developed in their livers.

But, as Libermann explains, the AFP biomarker has a number of shortcomings, including false positives and false negatives. “AFP not only fails to detect many early tumors, but it also lacks specificity. Consequently, elevated AFP levels could be indicators of not only cancer, but also of other liver diseases or even benign conditions, while on the other hand, many patients with small tumors will test negative for AFP.”

The authors, therefore, decided to evaluate the sensitivy and specificity of SELDI-TOF MS for the detection of liver cancer and to compare its effectiveness with AFP.

Examining serum samples of 92 patients – including 51 patients with liver cirrhosis and 41 patients with liver cancer, and among the cancer patients, individuals with both large and small (less than 2 cm) tumors -- by SELDI-TOF mass spectrometry, the investigators were able to identify an 11-protein signature that accurately discriminated between the cirrhosis and cancer patients, first in a training set (made up of 26 cirrhosis and 20 liver cancer patients), and then again in an independent validation set (consisting of 25 cirrhosis and 19 liver cancer patients). The resulting diagnostic value – 74 percent sensitivity and 88 percent specificity – compared favorably with the diagnostic accuracy of AFP (73 percent sensitivity and 71 percent specificity) as well as with two other biomarkers currently in clinical development for liver cancer, AFP-L3 and PIVKA-IL.

“Most strikingly,” notes Libermann, “in patients with small tumors (less than 2 cm), where AFP identified only three, and AFP-L3 and PIVKA-II only one each, the 11-protein signature correctly identified seven of eight patients at this early stage of disease.

“Biomarkers play a major role in all aspects of personalized medicine, not only in early disease detection, but also in outcome prediction and evaluation of therapeutic responses,” he adds. “This study provides strong evidence that serum contains early detection biomarkers and supports the notion that a combination of multiple biomarkers may prove more effective than individual biomarkers for diagnosis of liver cancer, as well as other cancers.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>