Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study examines decision-making deficits in older adults

16.01.2008
We often read or hear stories about older adults being conned out of their life savings, but are older individuals really more susceptible to fraud than younger adults? And, if so, how exactly does aging affect judgment and decision-making abilities?

Recent work led by University of Iowa neuroscientist Natalie Denburg, Ph.D., suggests that for a significant number of older adults, measurable neuropsychological deficits do seem to lead to poor decision-making and an increased vulnerability to fraud. The findings also suggest that these individuals may experience disproportionate aging of a brain region critical for decision-making.

"Our research suggests that elders who fall prey to fraudulent advertising are not simply gullible, depressed, lonely or less intelligent. Rather, it is truly more of a medical or neurological problem," said Denburg, who is an assistant professor of neurology in the UI Roy J. and Lucille A. Carver College of Medicine. "Our work sheds new light on this problem and perhaps may lead to a way to identify people at risk of being deceived."

Being able to identify how aging affects judgment and decision-making abilities could have broad societal implications. How to combat deceptive advertising targeted at older individuals -- some of whom appear to be particularly vulnerable to fraud -- is one important area of concern. In addition, older age is a time when individuals often are faced with many critical life decisions, including health care and housing choices, investment of retirement income, and allocation of personal wealth.

"By simply identifying a person as potentially vulnerable to fraud, family members can be more vigilant and can implement measures to protect the older adult," Denburg said. "In addition, a conservator or family member could be involved in transactions involving large amounts of money."

Denburg's most recent study, published Dec. 2007 in the Annals of the New York Academy of Sciences, shows that 35 to 40 percent of a test group of 80 healthy older adults with no apparent neurological deficits have poor decision-making abilities as tested in a laboratory experiment known as the Iowa Gambling Task (IGT). The IGT is a computerized decision-making test where participants draw cards from different decks with the aim of maximizing their winnings. Some of the decks yield good results in aggregate, while others yield poor outcomes.

Following the poor decision-makers through several additional tests, the researchers found that in addition to the poor performance on the IGT, this subgroup of older adults also were more likely to fall prey to deceptive advertising.

Using a set of real advertisements that had been deemed misleading by the Federal Trade Commission and several counterpart, non-deceptive advertisements, the study showed that the poor decision-makers are much less able to spot inconsistencies and pick up on deceptive messages than good decision-makers. Poor decision-makers also were more likely to indicate an intention to buy the article advertised in the misleading advertisement. In contrast, there was no difference in comprehension of non-deceptive advertisements between the two groups of older adults.

The researchers also measured the amount of palm sweating for each participant as they performed the Iowa Gambling Task. Bodily (or autonomic) responses, like sweating, have been shown to play an important role in decision-making. When these responses are absent or abnormal, then decision-making also is affected.

Good decision-makers display different anticipatory responses (amount of sweating) prior to a good or a bad choice, which appears to help them discriminate between the two options. In contrast, the older adults with poor decision-making abilities did not sweat more or less when deciding between a good or bad choice.

Another group of patients who perform poorly on the IGT and have abnormal bodily responses to the test are individuals with acquired damage to the ventromedial prefrontal cortex (VMPC) -- an area of the brain that appears to be critical for good decision-making.

"Our hypothesis is that older poor decision-makers have deficits in their prefrontal cortex," Denburg explained. "The next element of our study will be to complete structural and functional brain-imaging studies to see if we can identify differences between poor decision-makers and good decision-makers either in brain structure or in how the brain functions during decision-making tasks."

The team already is conducting structural imaging tests, and Denburg has just received a three-year, $100,00 grant from the Dana Foundation to do functional imaging studies.

Preliminary analysis of the structural imaging data suggests there are physical differences between the brains of poor decision-makers and those of the good decision-makers.

Understanding the neurological basis for impaired decision-making could also suggest potential medications that might help. Some studies have suggested that altering neurotransmitter levels may affect decision-making ability. However, Denburg notes that this approach is speculative at this time.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>