Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study locates cholesterol genes; finds surprises about good, bad cholesterol

15.01.2008
An international study of 20,000 people found seven new genes that influence blood cholesterol levels, a major factor in heart disease, and confirmed 11 other genes previously thought to influence cholesterol.

The international study led by researchers from the University of Michigan School of Public Health set out to identify or confirm genetic variants that influence lipid levels, and secondly, to see if those variants were linked to the decreased or increased risk of heart disease. The findings will be published online in the journal Nature Genetics on Jan. 13.

The results may lead the medical community to rethink the role of HDL (good cholesterol) and LDL (bad cholesterol) in heart disease, said Goncalo Abecasis, associate professor in the U-M School of Public Health. Abecasis co-directed the study with Karen Mohlke, assistant professor of genetics at the University of North Carolina at Chapel Hill School of Medicine.

"It was surprising that while genetic variants that increase your bad cholesterol are also associated with increased risk of heart disease, we did not find that variants influencing your good cholesterol were associated with decreased risk of coronary artery disease. Perhaps that result will lead us to reexamine the roles of good and bad cholesterol in susceptibility to heart disease," Abecasis said.

Coronary artery disease, a condition where plaque accumulates on the walls of coronary arteries, is the most common type of heart disease and a leading cause of death in industrialized countries. The type and amount of cholesterol and other lipids in the bloodstream contribute to the risk of coronary artery disease, which can cause heart attack, stroke, angina and other heart conditions. Both genetic and environmental factors influence a person's cholesterol and blood lipid levels.

"Finding new gene regions associated with cholesterol levels may bring us one step closer to developing better treatments, said Cristen Willer, co-first author and a research fellow in the Department of Biostatistics. "Nearly all of the gene regions that we found to be involved in higher LDL levels were also involved in coronary artery disease risk. This is a remarkable result and suggests that new drug therapies that target the genes in these regions will also help prevent coronary artery disease and allow people to live longer and healthier lives." Serena Sanna, who worked on the paper as a post-doctoral student in Abecasis' group and who is now at the National Research Council di Cagliari in Italy, is co-first author.

Of the seven new variants, two influenced HDL, one influenced LDL, and three influenced triglycerides, which are found in fat and in the bloodstream and like LDL, are associated with increased risk of heart disease. One variant influenced triglycerides and LDL.

Scientists initially examined 2 million genetic variants in 8,800 individuals and ended up focusing on a total of 25 genetic variants on 18 genes. Altogether the variations reported are responsible for less than a quarter of the genetic contributions to lipid levels.

The completion of the map of human genetic variation, or HapMap, has fueled a surge in this type of genome-wide association study, with most of the growth coming in the past 10 months. Researchers around the globe have now associated more than 60 common DNA variants with the risk of more than 20 common diseases or related traits.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>