Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probiotics affect metabolism

15.01.2008
Probiotics, such as yoghurt drinks containing live bacteria, have a tangible effect on the metabolism, according to the results of a new study published today (Tuesday 15 January) in the journal Molecular Systems Biology.

The research is the first to look in detail at how probiotics change the biochemistry of bugs known as gut microbes, which live in the gut and which play an important part in a person’s metabolic makeup. Different people have different types of gut microbes inside them and abnormalities in some types have recently been linked to diseases such as diabetes and obesity.

For the study, researchers from Imperial College London and Nestlé Research Center, Lausanne, Switzerland, gave two different types of probiotic drink to mice that had been transplanted with human gut microbes. Probiotics contain so-called ‘friendly’ bacteria and there is some evidence to suggest that adding ‘friendly’ bacteria to the gut can help the digestive system.

The researchers compared the levels of different metabolites in the liver, blood, urine, and faeces, of mice who had received treatment with probiotics and those that had not.

They found that treatment with probiotics had a whole range of biochemical effects and that these effects differed markedly between the two probiotic strains, Lactobacillus paracasei and Lactobacillus rhamnosus. Adding ‘friendly’ bacteria changed the makeup of the bugs in the gut, not only because this increased the number of such bacteria, but also because the ‘friendly’ bacteria worked with other bacteria in the gut, amplifying their effects.

One of the many biochemical changes observed by the researchers was a change in how mice treated with probiotics metabolised bile acids. These acids are made by the liver and their primary function is to emulsify fats in the upper gut. If probiotics can influence the way in which bile acids are metabolised, this means they could change how much fat the body is able to absorb.

Professor Jeremy Nicholson, corresponding author on the study from the Department of Biomolecular Medicine at Imperial College, explained “Some argue that probiotics can’t change your gut microflora - whilst there are at least a billion bacteria in a pot of yoghurt, there are a hundred trillion in the gut, so you’re just whistling in the wind.

“Our study shows that probiotics can have an effect and they interact with the local ecology and talk to other bacteria. We’re still trying to understand what the changes they bring about might mean, in terms of overall health, but we have established that introducing ’friendly’ bacteria can change the dynamics of the whole population of microbes in the gut,” he said.

The researchers hope their new insights about how probiotics and gut microbes interact will ultimately enable the development of new probiotic therapies, which can be tailored for people with different conditions and different metabolic makeups.

Dr. Sunil Kochhar, another author on the study from the Nestlé Research Center, added: “Understanding changes in the molecular events triggered by the so-called beneficial bacteria in the host metabolism is an important prerequisite in our efforts to develop customized nutritional solutions to maintain and/or enhance our consumer’s health and wellness at an individual level. The results of this study are highly promising to address personalized nutrition.”

Laura Gallagher | alfa
Further information:
http://www.research.nestle.com
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>