Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probiotics affect metabolism

15.01.2008
Probiotics, such as yoghurt drinks containing live bacteria, have a tangible effect on the metabolism, according to the results of a new study published today (Tuesday 15 January) in the journal Molecular Systems Biology.

The research is the first to look in detail at how probiotics change the biochemistry of bugs known as gut microbes, which live in the gut and which play an important part in a person’s metabolic makeup. Different people have different types of gut microbes inside them and abnormalities in some types have recently been linked to diseases such as diabetes and obesity.

For the study, researchers from Imperial College London and Nestlé Research Center, Lausanne, Switzerland, gave two different types of probiotic drink to mice that had been transplanted with human gut microbes. Probiotics contain so-called ‘friendly’ bacteria and there is some evidence to suggest that adding ‘friendly’ bacteria to the gut can help the digestive system.

The researchers compared the levels of different metabolites in the liver, blood, urine, and faeces, of mice who had received treatment with probiotics and those that had not.

They found that treatment with probiotics had a whole range of biochemical effects and that these effects differed markedly between the two probiotic strains, Lactobacillus paracasei and Lactobacillus rhamnosus. Adding ‘friendly’ bacteria changed the makeup of the bugs in the gut, not only because this increased the number of such bacteria, but also because the ‘friendly’ bacteria worked with other bacteria in the gut, amplifying their effects.

One of the many biochemical changes observed by the researchers was a change in how mice treated with probiotics metabolised bile acids. These acids are made by the liver and their primary function is to emulsify fats in the upper gut. If probiotics can influence the way in which bile acids are metabolised, this means they could change how much fat the body is able to absorb.

Professor Jeremy Nicholson, corresponding author on the study from the Department of Biomolecular Medicine at Imperial College, explained “Some argue that probiotics can’t change your gut microflora - whilst there are at least a billion bacteria in a pot of yoghurt, there are a hundred trillion in the gut, so you’re just whistling in the wind.

“Our study shows that probiotics can have an effect and they interact with the local ecology and talk to other bacteria. We’re still trying to understand what the changes they bring about might mean, in terms of overall health, but we have established that introducing ’friendly’ bacteria can change the dynamics of the whole population of microbes in the gut,” he said.

The researchers hope their new insights about how probiotics and gut microbes interact will ultimately enable the development of new probiotic therapies, which can be tailored for people with different conditions and different metabolic makeups.

Dr. Sunil Kochhar, another author on the study from the Nestlé Research Center, added: “Understanding changes in the molecular events triggered by the so-called beneficial bacteria in the host metabolism is an important prerequisite in our efforts to develop customized nutritional solutions to maintain and/or enhance our consumer’s health and wellness at an individual level. The results of this study are highly promising to address personalized nutrition.”

Laura Gallagher | alfa
Further information:
http://www.research.nestle.com
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>