Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism risk higher in people with gene variant

11.01.2008
Difference in gene appears to pose more risk when inherited from mothers

Scientists have found a variation in a gene that may raise the risk of developing autism, especially when the variant is inherited from mothers rather than fathers. The research was funded by the National Institute of Mental Health (NIMH), part of the National Institutes of Health.

Inheriting the gene variant does not mean that a child will inevitably develop autism. It means that a child may be more vulnerable to developing the disease than are children without the variation.

The gene, CNTNAP2, makes a protein that enables brain cells to communicate with each other through chemical signals and appears to play a role in brain cell development. Previous studies have implicated the gene in autism, and in this study researchers were able to link a specific variation in its structure to the disease.

Results of the study were reported online January 10 in the American Journal of Human Genetics, by Aravinda Chakravarti, Ph.D., Dan E. Arking, Ph.D., and colleagues from the Johns Hopkins University School of Medicine, with Edwin Cook, M.D., and colleagues from the University of Illinois at Chicago.

“Autism is highly heritable. Identifying the genes involved is crucial to our ability to map out the pathology of this isolating and sometimes terribly disabling disease, which currently has no cure,” said NIMH Director Thomas R. Insel, M.D.

Autism is a developmental brain disorder that impairs basic behaviors needed for social interactions, such as eye contact and speech, and includes other symptoms, such as repetitive, obsessive behaviors. The symptoms sometimes cause profound disability, and they persist throughout life. Treatments may relieve some symptoms, but no treatment is fully effective in treating the core social deficits.

Although the cause of autism is not yet clear, studies of twins have shown that genes play a major role. It is likely that variations in many genes, influenced by environmental factors, interact during brain development to cause vulnerability to the disease. These genes have yet to be identified. Several candidates, including CNTNAP2, have been suggested.

The assertion that the CNTNAP2 gene appears to be involved is strengthened by the fact that each of the different analytical approaches the researchers used in this study led to the same conclusion. Results were replicated in a second, larger group of participants, further implicating the gene. Together, the two groups of participants comprised one of the largest autism studies reported to date.

The first part of the study included 145 children with autism and their parents, from families that had two or more children with autism. Using a technique called genome-wide linkage analysis, the researchers found that a chromosome, 7q35, appeared to be linked to the disease.

Looking deeper into that chromosome, they identified a gene – CNTNAP2 – that contained a variant relevant to autism. Where a single segment of the genetic code could contain either the chemical base adenine or thymine, children with autism tended to have inherited the thymine variant.

To validate these findings, the researchers studied a separate group of participants; 1,295 children with autism and their healthy parents. The scientists again found that children with autism had higher rates of the thymine variant in the CNTNAP2 gene than would be expected to occur by chance.

When the researchers combined the data from the studies, they found that children with autism were about 20 percent more likely to have inherited the thymine variant from their mothers than from their fathers.

“This is a common variant. People inherit it all the time. Our finding that it’s associated with autism more often when it’s inherited from mothers is intriguing, but needs to replicated,” Chakravarti said.

The role of CNTNAP2 in brain-cell development suggested by earlier studies has to do with differentiation, the process by which precursor cells develop into the different kinds of cells of the body. CNTNAP2 carries the genetic code for a protein, part of a family called neurexins, that appears to enable the precursor cells to develop myelinated axons. These are projections through which brain cells send each other electrical impulses essential for normal brain function at especially high speeds.

“CNTNAP2 is an excellent candidate gene for autism,” Chakravarti said. “It encodes a protein that’s known to mediate interactions between brain cells and that appears to enable a crucial aspect of brain-cell development. A gene variant that altered either of these activities could have significant impact.”

Susan Cahill | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>