Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism risk higher in people with gene variant

11.01.2008
Difference in gene appears to pose more risk when inherited from mothers

Scientists have found a variation in a gene that may raise the risk of developing autism, especially when the variant is inherited from mothers rather than fathers. The research was funded by the National Institute of Mental Health (NIMH), part of the National Institutes of Health.

Inheriting the gene variant does not mean that a child will inevitably develop autism. It means that a child may be more vulnerable to developing the disease than are children without the variation.

The gene, CNTNAP2, makes a protein that enables brain cells to communicate with each other through chemical signals and appears to play a role in brain cell development. Previous studies have implicated the gene in autism, and in this study researchers were able to link a specific variation in its structure to the disease.

Results of the study were reported online January 10 in the American Journal of Human Genetics, by Aravinda Chakravarti, Ph.D., Dan E. Arking, Ph.D., and colleagues from the Johns Hopkins University School of Medicine, with Edwin Cook, M.D., and colleagues from the University of Illinois at Chicago.

“Autism is highly heritable. Identifying the genes involved is crucial to our ability to map out the pathology of this isolating and sometimes terribly disabling disease, which currently has no cure,” said NIMH Director Thomas R. Insel, M.D.

Autism is a developmental brain disorder that impairs basic behaviors needed for social interactions, such as eye contact and speech, and includes other symptoms, such as repetitive, obsessive behaviors. The symptoms sometimes cause profound disability, and they persist throughout life. Treatments may relieve some symptoms, but no treatment is fully effective in treating the core social deficits.

Although the cause of autism is not yet clear, studies of twins have shown that genes play a major role. It is likely that variations in many genes, influenced by environmental factors, interact during brain development to cause vulnerability to the disease. These genes have yet to be identified. Several candidates, including CNTNAP2, have been suggested.

The assertion that the CNTNAP2 gene appears to be involved is strengthened by the fact that each of the different analytical approaches the researchers used in this study led to the same conclusion. Results were replicated in a second, larger group of participants, further implicating the gene. Together, the two groups of participants comprised one of the largest autism studies reported to date.

The first part of the study included 145 children with autism and their parents, from families that had two or more children with autism. Using a technique called genome-wide linkage analysis, the researchers found that a chromosome, 7q35, appeared to be linked to the disease.

Looking deeper into that chromosome, they identified a gene – CNTNAP2 – that contained a variant relevant to autism. Where a single segment of the genetic code could contain either the chemical base adenine or thymine, children with autism tended to have inherited the thymine variant.

To validate these findings, the researchers studied a separate group of participants; 1,295 children with autism and their healthy parents. The scientists again found that children with autism had higher rates of the thymine variant in the CNTNAP2 gene than would be expected to occur by chance.

When the researchers combined the data from the studies, they found that children with autism were about 20 percent more likely to have inherited the thymine variant from their mothers than from their fathers.

“This is a common variant. People inherit it all the time. Our finding that it’s associated with autism more often when it’s inherited from mothers is intriguing, but needs to replicated,” Chakravarti said.

The role of CNTNAP2 in brain-cell development suggested by earlier studies has to do with differentiation, the process by which precursor cells develop into the different kinds of cells of the body. CNTNAP2 carries the genetic code for a protein, part of a family called neurexins, that appears to enable the precursor cells to develop myelinated axons. These are projections through which brain cells send each other electrical impulses essential for normal brain function at especially high speeds.

“CNTNAP2 is an excellent candidate gene for autism,” Chakravarti said. “It encodes a protein that’s known to mediate interactions between brain cells and that appears to enable a crucial aspect of brain-cell development. A gene variant that altered either of these activities could have significant impact.”

Susan Cahill | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>