Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers alarmed by levels of mercury and arsenic in Chinese freshwater ecosystem

11.01.2008
A team of researchers, led by biologists at Dartmouth, has found potentially dangerous levels of mercury and arsenic in Lake Baiyangdian, the largest lake in the North China Plain and a source of both food and drinking water for the people who live around it.

The researchers studied three separate locations in Lake Baiyangdian, all at varying distances from major sources of pollution, such as coal emissions, agricultural runoff, and sewage discharge. They found concentrations of arsenic and mercury in fish were above the threshold considered by the U.S. Environmental Protection Agency (EPA) to pose a risk to humans and wildlife.

The findings were published online on Dec. 24, 2007, in the journal Water, Air, and Soil Pollution.

"It's important to study this system because it is typical of many throughout China where human activity and industrialization are having detrimental effects on the environment with major human health implications," says Celia Chen '78, a research associate professor of biological sciences. "It makes perfect sense to apply what we're learning about lakes in the U.S. to other places in the world, like China, that have a growing global impact."

Chen and her team were curious to learn how arsenic and mercury, two toxic environmental metals, moved through the food web in a freshwater ecosystem known to be polluted and contaminated. In a process called bioaccumulation, mercury and arsenic were found throughout the food web, from the water, into the algae, through the tiny algae-eating zooplankton, to the fish. As expected, the researchers found that more nutrient-rich environments supported larger algal blooms, which resulted in lower concentrations of mercury and arsenic in the water due to uptake by the algae.

In their previous work, the researchers found that when there is a lot of algae present, mercury and arsenic are biodiluted, or more dispersed, so zooplankton that eat the algae are exposed to lower levels of the metals and transfer less to fish.

"Despite this potential interaction - a decrease in bioaccumulation due to high algal biomass - the mercury and arsenic in this system are high enough to be of concern to humans and wildlife that drink the water and consume fish," says Chen. "For example, we saw arsenic levels in the water that represent more than fifty times the EPA-recommended limit for consumption of fish and shellfish."

Chen's co-authors include Carol Folt, dean of the faculty and professor of biological sciences at Dartmouth, Paul Pickhardt at Lakeland College, and M.Q. Xu at the Chinese Academy of Sciences in Beijing. Chen and Folt are both affiliated with Dartmouth's Center for Environmental Health Sciences and its Toxic Metals Research Program. Funding from the National Science Foundation and the National Institute of Environmental Health Sciences supported this work.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>