Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overweight People May Not Know When They've Had Enough

11.01.2008
Brain-imaging study may explain why some continue to eat, despite full stomachs

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have found new clues to why some people overeat and gain weight while others don't. Examining how the human brain responds to "satiety" messages delivered when the stomach is in various stages of fullness, the scientists have identified brain circuits that motivate the desire to overeat. Treatments that target these circuits may prove useful in controlling chronic overeating, according to the authors. The study is published online and will appear in the February 15, 2008 issue of NeuroImage.

"By simulating feelings of fullness with an expandable balloon we saw the activation of different areas of the brain in normal weight and overweight people," said lead author Gene-Jack Wang of Brookhaven Lab's Center for Translational Neuroimaging. The overweight subjects had less activation in parts of the brain that signal satiety in normal weight subjects. The overweight subjects were also less likely than normal weight subjects to report satiety when their stomachs were moderately full. "These findings provide new evidence for why some people will continue to eat despite having eaten a moderate-size meal," said Wang.

Wang and colleagues studied the brain metabolism of 18 individuals with body mass indices (BMI) ranging from 20 (low/normal weight) to 29 (extremely overweight/borderline obese). Each study participant swallowed a balloon, which was then filled with water, emptied, and refilled again at volumes that varied between 50 and 70 percent. During this process, the researchers used functional magnetic resonance imaging (fMRI) to scan the subjects' brains. Subjects were also asked throughout the study to describe their feelings of fullness. The higher their BMI, the lower their likelihood of saying they felt "full" when the balloon was inflated 70 percent.

One notable region of the brain - the left posterior amygdala - was activated less in the high-BMI subjects, while it was activated more in their thinner counterparts. This activation was turned "on" when study subjects reported feeling full. Subjects who had the highest scores on self-reports of hunger had the least activation in the left posterior amygdala.

"This study provides the first evidence of the connection of the left amygdala and feelings of hunger during stomach fullness, demonstrating that activation of this brain region suppresses hunger," said Wang. "Our findings indicate a potential direction for treatment strategies - be they behavioral, medical or surgical -- targeting this brain region."

The scientists also looked at a range of hormones that regulate the digestive system, to see whether they played a role in responding to feelings of fullness. Ghrelin, a hormone known to stimulate the appetite and cause short-term satiety, showed the most relevance. Researchers found that individuals who had greater increases in ghrelin levels after their stomachs were moderately full also had greater activation of the left amygdala. "This indicates that ghrelin may control the reaction of the amygdala to satiety signals sent by the stomach," said Wang.

This study was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science, the National Institute on Drug Abuse (NIDA), the National Institute of Diabetes and Digestive and Kidney Diseases, the Intramural Research Program of the National Institute on Alcohol Abuse and Alcoholism (NIAAA), and the General Clinical Research Center at University Hospital Stony Brook. DOE has a long-standing interest in research on brain chemistry gained through brain-imaging studies. Brain-imaging techniques such as MRI are a direct outgrowth of DOE's support of basic physics and chemistry research.

The current study is part of a major focus of research at Brookhaven Lab on the neurobiology of eating disorders and obesity and their treatment. Earlier studies at the Lab have:

• identified brain circuits that may cause the obese to overeat
• shown that levels of dopamine receptors, which receive chemical messages of well being and reward in the brain, are decreased in the brains of obese individuals
• demonstrated that parts of the brain responsible for sensation in the tongue, mouth, and lips are more active in the obese

• revealed that the mere sight and smell of favorite foods spikes levels of dopamine in the brains of food-deprived people - just as it spikes this pleasure chemical in the brains of those with drug addictions in response to their drug of choice.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>