Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overweight People May Not Know When They've Had Enough

11.01.2008
Brain-imaging study may explain why some continue to eat, despite full stomachs

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have found new clues to why some people overeat and gain weight while others don't. Examining how the human brain responds to "satiety" messages delivered when the stomach is in various stages of fullness, the scientists have identified brain circuits that motivate the desire to overeat. Treatments that target these circuits may prove useful in controlling chronic overeating, according to the authors. The study is published online and will appear in the February 15, 2008 issue of NeuroImage.

"By simulating feelings of fullness with an expandable balloon we saw the activation of different areas of the brain in normal weight and overweight people," said lead author Gene-Jack Wang of Brookhaven Lab's Center for Translational Neuroimaging. The overweight subjects had less activation in parts of the brain that signal satiety in normal weight subjects. The overweight subjects were also less likely than normal weight subjects to report satiety when their stomachs were moderately full. "These findings provide new evidence for why some people will continue to eat despite having eaten a moderate-size meal," said Wang.

Wang and colleagues studied the brain metabolism of 18 individuals with body mass indices (BMI) ranging from 20 (low/normal weight) to 29 (extremely overweight/borderline obese). Each study participant swallowed a balloon, which was then filled with water, emptied, and refilled again at volumes that varied between 50 and 70 percent. During this process, the researchers used functional magnetic resonance imaging (fMRI) to scan the subjects' brains. Subjects were also asked throughout the study to describe their feelings of fullness. The higher their BMI, the lower their likelihood of saying they felt "full" when the balloon was inflated 70 percent.

One notable region of the brain - the left posterior amygdala - was activated less in the high-BMI subjects, while it was activated more in their thinner counterparts. This activation was turned "on" when study subjects reported feeling full. Subjects who had the highest scores on self-reports of hunger had the least activation in the left posterior amygdala.

"This study provides the first evidence of the connection of the left amygdala and feelings of hunger during stomach fullness, demonstrating that activation of this brain region suppresses hunger," said Wang. "Our findings indicate a potential direction for treatment strategies - be they behavioral, medical or surgical -- targeting this brain region."

The scientists also looked at a range of hormones that regulate the digestive system, to see whether they played a role in responding to feelings of fullness. Ghrelin, a hormone known to stimulate the appetite and cause short-term satiety, showed the most relevance. Researchers found that individuals who had greater increases in ghrelin levels after their stomachs were moderately full also had greater activation of the left amygdala. "This indicates that ghrelin may control the reaction of the amygdala to satiety signals sent by the stomach," said Wang.

This study was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science, the National Institute on Drug Abuse (NIDA), the National Institute of Diabetes and Digestive and Kidney Diseases, the Intramural Research Program of the National Institute on Alcohol Abuse and Alcoholism (NIAAA), and the General Clinical Research Center at University Hospital Stony Brook. DOE has a long-standing interest in research on brain chemistry gained through brain-imaging studies. Brain-imaging techniques such as MRI are a direct outgrowth of DOE's support of basic physics and chemistry research.

The current study is part of a major focus of research at Brookhaven Lab on the neurobiology of eating disorders and obesity and their treatment. Earlier studies at the Lab have:

• identified brain circuits that may cause the obese to overeat
• shown that levels of dopamine receptors, which receive chemical messages of well being and reward in the brain, are decreased in the brains of obese individuals
• demonstrated that parts of the brain responsible for sensation in the tongue, mouth, and lips are more active in the obese

• revealed that the mere sight and smell of favorite foods spikes levels of dopamine in the brains of food-deprived people - just as it spikes this pleasure chemical in the brains of those with drug addictions in response to their drug of choice.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>