Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study maps life in extreme environments

03.01.2008
A team of biologists have developed a model mapping the control circuit governing a whole free living organism. This is an important milestone for the new field of systems biology and will allow the researchers to model how the organism adapts over time in response to its environment.

This study marks the first time researchers have accurately predicted a cell’s dynamics at the genome scale (for most of the thousands of components in the cell). The findings, which are based on a study of Halobacterium salinarum, a free-living microbe that lives in hyper-extreme environments, appear in the latest issue of the journal Cell.

The study’s lead authors are New York University Assistant Biology Professor Richard Bonneau, who holds appointments at NYU’s Center for Genomics & Systems Biology and the university’s Courant Institute for Mathematical Sciences, and Nitin Baliga of the Institute for Systems Biology in Seattle, WA. The study also included researchers at the University of Maryland, Vanderbilt University, and the University of Washington.

The researchers focused on a little studied organism that can survive high salt, radiation, and other stresses that would be deadly to most other organisms. By focusing on such an organism the researchers were able to show definitively that they could understand and model the circuit controlling the cell directly from experiments designed to measure all genes in the genome simultaneously. These are called systems-biology experiments. This scholarship is part of a new scientific field, systems biology, which examines how genes influence each other via extremely large networks of interaction and how these networks respond to stimuli, adapting over time to new environments and cell states. The field has blossomed over the past 10 years, spurred by successful mapping of genomic systems.

By a combination of experimental and algorithmic advances studies in this area have shown that scientific knowledge can go from genome to a functional and dynamical draft-model of the whole organism in a relatively short time. Important previous studies in this area identified cell components (genome sequencing) and how cell components are connected. But the study in Cell went beyond previous scholarship and accurately modeled how Halobacterium, an important organism in high-salt environments such as the Dead Sea or Utah’s Great Salt Lake, functioned over time and responded to changing environmental conditions. The researchers were, for the first time, able to predict how over 80 percent of the total genome (several thousand genes) responded to stimuli over time, dynamically rearranging the cell’s makeup to meet environmental stresses.

“This organism is amazingly versatile and tolerates lots of different extreme environmental stresses,” said Bonneau. “It does this by making decisions and dynamically changing the levels of genes and proteins; if it makes incorrect decisions it dies. Our model shows how these decisions get made, how the bug responds.”

“This is also a good model to explain how, in general, cells make stable decisions as they move through time scales,” added Bonneau, who is part of an NYU research group that handled the analysis of this genome. “If you want to understand how cells respond to their environments, the model offers a clearer window than previously existed for this domain of life.”

The collaboration between Baliga’s and Bonneau’s research groups represents a type of partnership becoming more essential to biological and biomedical research: biologists and computer scientists teaming up to design experiments and analysis that synergize to decipher living systems, resulting in ever more complex and accurate models of the cell. The result is more comprehensive, reaching genome-scale levels, more accurate, and more relevant to biologists and biomedical researchers hoping to understand the whole system.

Bonneau added that by understanding how biological systems function, researchers can then turn their attention to engineering the biosynthesis of biofuels and pharmaceuticals.

“We are now gearing up to try this sort of analysis on several other organisms,” he noted. “In addition, because this study examined the dynamics of a key environmental microbe it offers a window into understanding life in extreme environments, in some cases created by human activities, such as the concentration of pollution by evaporation or high salt marine environments.”

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>