Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parents show bias in sibling rivalry

20.12.2007
Most parents would hotly deny favouring one child over another but new research suggests they may have little choice in the matter.

Biologists studying a unique species of beetle that raises and cares for its young have found that parents instinctively favour the oldest offspring.

The University of Manchester research – published in Ecology this month – supports the findings of studies carried out on human families but is significant in that it suggests a wholly natural tendency towards older siblings.

“The burying beetle Nicrophorus vespilloides has a similar family structure to that of a human family unit in that there are two parents, a number of offspring and interactions between parents and their young,” said Dr Per Smiseth, who led the research in the University’s Faculty of Life Sciences.

“Of course human families are more complex and parent-child relationships are much more sophisticated. However, studying this beetle can help us understand the basic biological principles of how family relationships work.

“Our study looked at how the parent beetles mediate competition between different aged offspring compared to what happens when the young were left to fend for themselves and indicates that parental decisions are important in determining the outcome of competition between offspring.”

The beetles, which are native to Britain, give birth to a batch of about 20 young in the carcass of a dead animal over a period of 30 hours. The parents feed the young grubs on regurgitated flesh from the carcass.

The young beetles are able to feed themselves but they grow more quickly and become larger when fed by their parents. By generating experimental broods comprising two sets of offspring, one set of older grubs and one younger set, the scientists were able to study their development, first with the parents present and then when left to fend for themselves.

“When both sets of grubs were left to fend for themselves they grew at the same rate and matured to an equal size,” said Dr Smiseth, whose research is funded by the Natural Environment Research Council and the Medical Research Council.

“However, when we allow the parents to remain with the offspring, there is clear favouritism towards the older siblings, which grow at a faster rate as they take the lion’s share of their parents’ offerings.”

The team believes there are two explanations for the behaviour: the first is that the parents attach more value to the older offspring as their maturity gives them a better chance of survival than their younger siblings.

The second explanation is that the older grubs, being stronger, are able to dominate their younger rivals and, in doing so, better attract the attention of the parents when begging for food.

“Even if this second theory is true, the parents are still complicit in the bias towards the older siblings,” said Dr Smiseth. “However, the true answer is probably some combination of the two explanations.

“The research tells us something about the relationships within families. We have this view that families are harmonious and that the overriding concern is to help one another. This is true to an extent but it’s not to say that families are not without conflict, especially if the resources cannot be divided equitably.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>