Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests future sea-level rises may be even higher than predicted

18.12.2007
A new study of past sea levels shows that they rose by an average of 1.6 metres every one hundred years the last time the Earth was as warm as it is predicted to be later this century, with levels reaching up to six metres above those seen today. The findings suggest that current predictions of sea-level rises may be too low.

The study by a consortium of scientists from the National Oceanography Centre, Southampton and research centres in Tübingen (Germany), Cambridge and New York, is published this week in the new journal Nature Geoscience.

The rate of future sea level rise is one of the crucial uncertainties in projections of future climate warming. During the last interglacial (124 to 119 thousand years ago), also known as the Eemian or Marine Isotope Stage 5e, the Earth's climate was warmer than it is today, due to a different configuration of the planet's orbit around the Sun.

It was also the most recent period in which sea levels reached around six metres (20 feet) above the present, due to melt-back of ice sheets on Greenland and Antarctica. The new results provide the first robust documentation of the rates at which sea level rose to these high positions.

Lead author, Professor Eelco Rohling of the University of Southampton's School of Ocean and Earth Science, based at the National Oceanography Centre, said: 'There is currently much debate about how fast future sea level rise might be. Several researchers have made strong theoretical cases that the rates of rise projected from models in the recent IPCC Fourth Assessment are too low. This is because the IPCC estimates mainly concern thermal expansion and surface ice melting, while not quantifying the impact of dynamic ice-sheet processes. Until now, there have been no data that sufficiently constrain the full rate of past sea level rises above the present level.

'We have exploited a new method for sea level reconstruction, which we have pioneered since 1998, to look at rates of rise during the last interglacial. At that time, Greenland was 3 to 5°C warmer than today, similar to the warming expected 50 to 100 years from now. Our analysis suggests that the accompanying rates of sea level rise due to ice volume loss on Greenland and Antarctica were very high indeed. The average rate of rise of 1.6 metres per century that we find is roughly twice as high as the maximum estimates in the IPCC Fourth Assessment report, and so offers the first potential constraint on the dynamic ice sheet component that was not included in the headline IPCC values.'

The researchers' findings offer a sound observational basis for recent suggestions about the potential for very high rates of sea-level rise in the near future, which may exceed one metre per century. Current ice-sheet models do not predict rates of change this large, but they do not include many of the dynamic processes already being observed. The new results highlight the need for further development of a better understanding of ice-sheet dynamics in a changing climate.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>