Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests future sea-level rises may be even higher than predicted

18.12.2007
A new study of past sea levels shows that they rose by an average of 1.6 metres every one hundred years the last time the Earth was as warm as it is predicted to be later this century, with levels reaching up to six metres above those seen today. The findings suggest that current predictions of sea-level rises may be too low.

The study by a consortium of scientists from the National Oceanography Centre, Southampton and research centres in Tübingen (Germany), Cambridge and New York, is published this week in the new journal Nature Geoscience.

The rate of future sea level rise is one of the crucial uncertainties in projections of future climate warming. During the last interglacial (124 to 119 thousand years ago), also known as the Eemian or Marine Isotope Stage 5e, the Earth's climate was warmer than it is today, due to a different configuration of the planet's orbit around the Sun.

It was also the most recent period in which sea levels reached around six metres (20 feet) above the present, due to melt-back of ice sheets on Greenland and Antarctica. The new results provide the first robust documentation of the rates at which sea level rose to these high positions.

Lead author, Professor Eelco Rohling of the University of Southampton's School of Ocean and Earth Science, based at the National Oceanography Centre, said: 'There is currently much debate about how fast future sea level rise might be. Several researchers have made strong theoretical cases that the rates of rise projected from models in the recent IPCC Fourth Assessment are too low. This is because the IPCC estimates mainly concern thermal expansion and surface ice melting, while not quantifying the impact of dynamic ice-sheet processes. Until now, there have been no data that sufficiently constrain the full rate of past sea level rises above the present level.

'We have exploited a new method for sea level reconstruction, which we have pioneered since 1998, to look at rates of rise during the last interglacial. At that time, Greenland was 3 to 5°C warmer than today, similar to the warming expected 50 to 100 years from now. Our analysis suggests that the accompanying rates of sea level rise due to ice volume loss on Greenland and Antarctica were very high indeed. The average rate of rise of 1.6 metres per century that we find is roughly twice as high as the maximum estimates in the IPCC Fourth Assessment report, and so offers the first potential constraint on the dynamic ice sheet component that was not included in the headline IPCC values.'

The researchers' findings offer a sound observational basis for recent suggestions about the potential for very high rates of sea-level rise in the near future, which may exceed one metre per century. Current ice-sheet models do not predict rates of change this large, but they do not include many of the dynamic processes already being observed. The new results highlight the need for further development of a better understanding of ice-sheet dynamics in a changing climate.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>