Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caspase-1 protein governs the body inflammatory response

13.12.2007
What happens when bacteria infect the human body?

In an attempt to shed light on this process, Dr. Maya Saleh, researcher at the critical care division and the centre for the study of host resistance of the McGill University Health Centre (MUHC) Research Institute, describes previously unsuspected metabolic pathways involved in the inflammatory response. This discovery could lead to many potential benefits, particularly for the treatment of sepsis: infections that spread to the blood and deteriorates into a whole-body inflammatory state.

Her study is published in the Journal of Biological Chemistry. Because of the high quality of the research, this article was selected as a "Paper of the Week" for the December 14, 2007 issue of the journal, a distinction awarded to only one percent of its publications.

One of the body's first defenses against a bacterial infection is the activation of pathogen-eating cells called macrophages, which ingest the bacteria. This ingestion activates a protein inside the macrophage called Caspase-1. Dr. Saleh's study shows that Caspase-1 is the starting point for many metabolic reactions that, together, lead to the death of the macrophage and activate the rest of the immune system.

One of the roles of Caspase-1 in inflammation has been known for many years, namely that it activates immune system messengers called cytokines, which in turn activate the body's entire defense mechanism. But we now know this is not its sole function: "Our study demonstrates that Caspase-1 also causes the death of the macrophage by destroying some of the cell's basic structures and by blocking many metabolic pathways. The main pathway it blocks is glycolysis, or the production of energy through the breakdown of glucose," said Dr. Saleh, who is also an assistant professor in the faculty of medicine at the McGill University.

This finding opens new doors for fundamental research. Previous results suggested that Caspase-1 is also involved in fatal respiratory arrest that can occur during septic shock. Further research will be required to determine if that blockade of glycolysis by caspase-1 is a contributing factor.

This study could also have an important impact on the applied research of pharmaceutical companies. Currently, most anti-inflammatory drugs prescribed to fight sepsis target cytokines. "We know empirically that the effect of medications that target cytokines during sepsis is limited; our study demonstrates that Caspase-1 would be a more effective target", added Dr. Saleh. Since sepsis is no longer considered simply as a "cytokine storm", but as a more complex network of metabolic reactions, our vision of how to fight it needs to evolve accordingly.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 934-1934 #36419
isabelle.kling@muhc.mcgill.ca

Isabelle Kling | MUHC
Further information:
http://www.muhc.ca/research

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>