Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caspase-1 protein governs the body inflammatory response

13.12.2007
What happens when bacteria infect the human body?

In an attempt to shed light on this process, Dr. Maya Saleh, researcher at the critical care division and the centre for the study of host resistance of the McGill University Health Centre (MUHC) Research Institute, describes previously unsuspected metabolic pathways involved in the inflammatory response. This discovery could lead to many potential benefits, particularly for the treatment of sepsis: infections that spread to the blood and deteriorates into a whole-body inflammatory state.

Her study is published in the Journal of Biological Chemistry. Because of the high quality of the research, this article was selected as a "Paper of the Week" for the December 14, 2007 issue of the journal, a distinction awarded to only one percent of its publications.

One of the body's first defenses against a bacterial infection is the activation of pathogen-eating cells called macrophages, which ingest the bacteria. This ingestion activates a protein inside the macrophage called Caspase-1. Dr. Saleh's study shows that Caspase-1 is the starting point for many metabolic reactions that, together, lead to the death of the macrophage and activate the rest of the immune system.

One of the roles of Caspase-1 in inflammation has been known for many years, namely that it activates immune system messengers called cytokines, which in turn activate the body's entire defense mechanism. But we now know this is not its sole function: "Our study demonstrates that Caspase-1 also causes the death of the macrophage by destroying some of the cell's basic structures and by blocking many metabolic pathways. The main pathway it blocks is glycolysis, or the production of energy through the breakdown of glucose," said Dr. Saleh, who is also an assistant professor in the faculty of medicine at the McGill University.

This finding opens new doors for fundamental research. Previous results suggested that Caspase-1 is also involved in fatal respiratory arrest that can occur during septic shock. Further research will be required to determine if that blockade of glycolysis by caspase-1 is a contributing factor.

This study could also have an important impact on the applied research of pharmaceutical companies. Currently, most anti-inflammatory drugs prescribed to fight sepsis target cytokines. "We know empirically that the effect of medications that target cytokines during sepsis is limited; our study demonstrates that Caspase-1 would be a more effective target", added Dr. Saleh. Since sepsis is no longer considered simply as a "cytokine storm", but as a more complex network of metabolic reactions, our vision of how to fight it needs to evolve accordingly.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 934-1934 #36419
isabelle.kling@muhc.mcgill.ca

Isabelle Kling | MUHC
Further information:
http://www.muhc.ca/research

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>