Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renewable Sources Can Provide Stable Power

02.12.2013
Renewable energy sources - an area in which Germany is a leader - are becoming increasingly important for the worldwide power mix.

Nevertheless, experts are still deliberating which market model is best for transitioning to renewables.



However, one of the major technological challenges in this regard, namely balancing the fluctuations that are caused by wind and solar power, may soon be solved. The research project Kombikraftwerk 2 (Combined Power Plant 2) shows that a Germany-wide power grid could be stably operated even if it were fed only with electricity from renewable sources.

The project partners (which included Siemens' global research unit Corporate Technology) also demonstrated that solar, wind, and biogas power plants can contribute to system stability if they are connected with one another to form an intelligently controlled power plant.

In addition to wind, solar, biogas, and geothermal facilities, hydroelectric plants, pumped-storage electrical power stations and power-to-gas facilities also played a key role in the project scenario. Surplus electricity was used for the electrolytic generation of hydrogen, which was combined with CO2 that had been separated from the exhaust of fossil fuel power plants to form methane and then fed into the public gas network.

Gas-fired power plants used this methane to generate electricity whenever bottlenecks arose. On the basis of weather data and electricity consumption data, the simulations calculated the power output and the demand for every hour of the year in great detail and determined how electricity had to be transmitted in the grid.

Grid frequency and voltage must be kept stable in order to prevent power outages. As a result, power plants must provide a certain amount of reactive and controlling power. To maintain such power reserves in the scenario, the settings of the wind power rotors were adjusted to reduce output and the inverters that feed electricity into the grid were used to limit the power generation of the photovoltaic facilities. The simulations and the field test showed that a combined power plant consisting of renewables, gas turbines, and storage systems can provide the required level of output within seconds.

Experts at Siemens Corporate Technology made optimization calculations for the economical construction of electrolysis facilities and methane power plants. They also determined how much the grid would have to be expanded. Moreover, they calculated the power flows in the grid for every instant and every location, and they worked together with the University of Hanover to determine how much reactive and controlling power would be needed. In this way they showed in detail how system stability can be maintained at all times throughout the year.

Besides Siemens, the partners in the three-year Kombikraftwerk 2 research project were the German Meteorological Service, Enercon, the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Ökobit, Leibniz University in Hanover, SMA Solar Technology, SolarWorld, and the German Renewable Energies Agency.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>