Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing diet early in pregnancy stunts fetal brain development

18.01.2011
Study shows that the fetal brain is vulnerable to moderate decreases in maternal nutrition

Eating less during early pregnancy impaired fetal brain development in a nonhuman primate model, researchers from The University of Texas Health Science Center San Antonio reported today.

The researchers found decreased formation of cell-to-cell connections, cell division and amounts of growth factors in the fetuses of mothers fed a reduced diet during the first half of pregnancy. "This is a critical time window when many of the neurons as well as the supporting cells in the brain are born," said Peter Nathanielsz, M.D., Ph.D., director of the Center for Pregnancy and Newborn Research in the Health Science Center School of Medicine.

The study included collaborators at the Southwest Foundation for Biomedical Research (SFBR) in San Antonio and Friedrich Schiller University in Jena, Germany. The team compared two groups of baboon mothers located at SFBR's Southwest National Primate Research Center. One group ate as much as they wanted during the first half of pregnancy while the other group was fed 30 percent less, a level of nutrition similar to what many prospective mothers in the U.S. experience.

Hundreds of genes involved

"Our collaboration allowed us to determine that the nutritional environment impacts the fetal brain at both the cellular and molecular levels," said SFBR's Laura Cox, Ph.D. "That is, we found dysregulation of hundreds of genes, many of which are known to be key regulators in cell growth and development, indicating that nutrition plays a major role during fetal development by regulating the basic cellular machinery."

Moderate versus severe reduction

It is known that marked nutrient restriction, such as in famine conditions, adversely affects development of the fetal brain. Senior author Thomas McDonald, Ph.D., also of the Health Science Center, said the study "is the first demonstration of major effects caused by the levels of food insecurity that occur in sections of U.S. society and demonstrates the vulnerability of the fetus to moderate reduction in nutrients."

Dr. Nathanielsz noted:

In teenage pregnancy, the developing fetus is deprived of nutrients by the needs of the growing mother;
In pregnancies late in reproductive life, a woman's arteries are stiffer and the blood supply to the uterus decreases, inevitably affecting nutrient delivery to the fetus;

Diseases such as preeclampsia or high blood pressure in pregnancy can lead to decreased function of the placenta with decreased delivery of nutrients to the fetus.

'Lifetime effects'

"This study is a further demonstration of the importance of good maternal health and diet," Dr. McDonald said. "It supports the view that poor diets in pregnancy can alter development of fetal organs, in this case the brain, in ways that will have lifetime effects on offspring, potentially lowering IQ and predisposing to behavioral problems."

Developmental programming of lifetime health has been shown to play a role in later development of obesity, diabetes and heart disease. In light of this new finding, research should focus on effects of developmental programming in the context of autism, depression, schizophrenia and other brain disorders.

Mother's protection

The study, published this week in Proceedings of the National Academy of Sciences, also forces researchers to review the commonly held notion that during pregnancy the mother is able to protect the fetus from dietary challenges such as poor nutrition, Dr. McDonald said.

The nonhuman primate model's brain developmental stages are very close to those of human fetuses, the researchers noted. Most previous research in this area was conducted in rats.

Additional contact:

Joe Carey, (210) 258-9437, jcarey@sfbr.org

On the Web and Twitter

For current news from the UT Health Science Center San Antonio, please visit our news release website or follow us on Twitter @uthscsa.

About the UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving National Institutes of Health (NIH) funding. Research and other sponsored program activity totaled a record $259 million in fiscal year 2009. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 26,000 graduates. The $744 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>