Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redrawing our borders

19.11.2010
Researchers follow the money to show complicated ways people connect

What are borders these days? When travel was local, borders and communities were easy to define, but now our connectivity is more complex. It's time to think of borders differently, according to Northwestern University researchers.

To reflect today's reality, they have taken a look at human mobility and redrawn the borders within the United States, showing areas of the country that are most connected. Some of the borders in this new map are familiar, but many are not.

The research team, led by professor Dirk Brockmann, used the wealth of data generated by Wheres's George? (wheresgeorge.com), a popular website that tracks one dollar bills spent across the country. The many millions of bank notes, having been passed from one person to another, represent links between geographic places.

An award-winning video produced by Christian Thiemann and Daniel Grady, doctoral students and members of Brockmann's research group, illustrates the work: http://www.northwestern.edu/newscenter/stories/2010/02/money.html.

Some divisions were expected, but many were a surprise. Some of the most significant borders split states, such as Illinois, Wisconsin and Pennsylvania. This initially puzzled the researchers, but people who have seen the research and live in those areas say the borders reflect cultural segmentation and the pull of certain large cities.

"We also thought that the strong, long-range relationships, such as between Los Angeles and New York, would overshadow the local, short-distance travel, but it did not," said Brockmann, associate professor of engineering sciences and applied mathematics at the McCormick School of Engineering and Applied Science. "The short distance travel has a stronger impact."

Some community divisions fall along more familiar lines, such as purely political boundaries (state lines), political boundaries that reflect geography (the Mississippi River) and others caused entirely by a geographical feature (the Appalachian Mountains cutting through West Virginia).

The study will be published Nov. 18 in the journal PLoS ONE.

The work already has attracted the attention of diverse individuals and groups wanting to know more about the "mobility neighborhoods." The Federal Reserve System is interested. Commuters to Chicago from northwest Indiana are interested. And a leading American linguist is interested.

"The well-defined geographic areas we found show us how people really interact and are connected," said Brockmann, who also studies how infectious disease spreads. "These results open up pathways for investigation in a variety of areas."

Where's George allows anyone to record a bill's serial number and then track its journeys as other people spend it across the country. Every time a dollar is spent in a new place, it means someone moved it there. Research has shown that this flux of money data is a good proxy for human mobility. The very large database is truly multiscale: links span thousands of miles, hundreds of miles and just a few miles.

"Think of these links as an attractive force connecting two places," said Brockmann, a member of the Northwestern Institute on Complex Systems. "The social and mobility ties represent a gravitational pull of sorts."

The information could be valuable to the Federal Reserve for optimizing the transportation of money among the 12 regional Reserve Banks across the United States. A professor of linguistics from the University of Pennsylvania wants to use the travel boundaries in his studies of regional dialect boundaries. The findings support those in northwest Indiana counties who feel more connected to Chicago and favor being in the same time zone. And anyone involved with planning large-scale infrastructure, such as high-speed rail, who needs to know where people want to go, can benefit from the human mobility map, Brockmann said.

Using supercomputers, Brockmann and his team applied a random algorithm to the Where's George? data, which collects counties into groups. The traffic within each group is very high -- very connected -- compared to the traffic between the groups. They ran the algorithm thousands of times, with each run producing a slightly different map. Then they took the results, overlaid all the maps and produced one single map, showing the strongest boundaries.

The video, "Follow the Money: Human Mobility and Effective Communities," won first place in the 2009 International Science and Engineering Visualization Challenge, sponsored by the National Science Foundation and the journal Science.

The title of the PLoS ONE paper is "The Structure of Borders in a Small World." In addition to Brockmann, Thiemann and Grady, other authors of the paper are Fabian Theis and Rafael Brune.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>