Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redrawing our borders

19.11.2010
Researchers follow the money to show complicated ways people connect

What are borders these days? When travel was local, borders and communities were easy to define, but now our connectivity is more complex. It's time to think of borders differently, according to Northwestern University researchers.

To reflect today's reality, they have taken a look at human mobility and redrawn the borders within the United States, showing areas of the country that are most connected. Some of the borders in this new map are familiar, but many are not.

The research team, led by professor Dirk Brockmann, used the wealth of data generated by Wheres's George? (wheresgeorge.com), a popular website that tracks one dollar bills spent across the country. The many millions of bank notes, having been passed from one person to another, represent links between geographic places.

An award-winning video produced by Christian Thiemann and Daniel Grady, doctoral students and members of Brockmann's research group, illustrates the work: http://www.northwestern.edu/newscenter/stories/2010/02/money.html.

Some divisions were expected, but many were a surprise. Some of the most significant borders split states, such as Illinois, Wisconsin and Pennsylvania. This initially puzzled the researchers, but people who have seen the research and live in those areas say the borders reflect cultural segmentation and the pull of certain large cities.

"We also thought that the strong, long-range relationships, such as between Los Angeles and New York, would overshadow the local, short-distance travel, but it did not," said Brockmann, associate professor of engineering sciences and applied mathematics at the McCormick School of Engineering and Applied Science. "The short distance travel has a stronger impact."

Some community divisions fall along more familiar lines, such as purely political boundaries (state lines), political boundaries that reflect geography (the Mississippi River) and others caused entirely by a geographical feature (the Appalachian Mountains cutting through West Virginia).

The study will be published Nov. 18 in the journal PLoS ONE.

The work already has attracted the attention of diverse individuals and groups wanting to know more about the "mobility neighborhoods." The Federal Reserve System is interested. Commuters to Chicago from northwest Indiana are interested. And a leading American linguist is interested.

"The well-defined geographic areas we found show us how people really interact and are connected," said Brockmann, who also studies how infectious disease spreads. "These results open up pathways for investigation in a variety of areas."

Where's George allows anyone to record a bill's serial number and then track its journeys as other people spend it across the country. Every time a dollar is spent in a new place, it means someone moved it there. Research has shown that this flux of money data is a good proxy for human mobility. The very large database is truly multiscale: links span thousands of miles, hundreds of miles and just a few miles.

"Think of these links as an attractive force connecting two places," said Brockmann, a member of the Northwestern Institute on Complex Systems. "The social and mobility ties represent a gravitational pull of sorts."

The information could be valuable to the Federal Reserve for optimizing the transportation of money among the 12 regional Reserve Banks across the United States. A professor of linguistics from the University of Pennsylvania wants to use the travel boundaries in his studies of regional dialect boundaries. The findings support those in northwest Indiana counties who feel more connected to Chicago and favor being in the same time zone. And anyone involved with planning large-scale infrastructure, such as high-speed rail, who needs to know where people want to go, can benefit from the human mobility map, Brockmann said.

Using supercomputers, Brockmann and his team applied a random algorithm to the Where's George? data, which collects counties into groups. The traffic within each group is very high -- very connected -- compared to the traffic between the groups. They ran the algorithm thousands of times, with each run producing a slightly different map. Then they took the results, overlaid all the maps and produced one single map, showing the strongest boundaries.

The video, "Follow the Money: Human Mobility and Effective Communities," won first place in the 2009 International Science and Engineering Visualization Challenge, sponsored by the National Science Foundation and the journal Science.

The title of the PLoS ONE paper is "The Structure of Borders in a Small World." In addition to Brockmann, Thiemann and Grady, other authors of the paper are Fabian Theis and Rafael Brune.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>