Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recreational drug users who switch from ecstasy to mephedrone don't understand the dangers

25.03.2014

Contrary to popular belief among recreational drug users, mephedrone has several important differences when compared with MDMA, commonly known as ecstasy.

These differences mean that mephedrone could leave a user with acute withdrawal symptoms and indicate that it may have a higher potential for developing dependence than MDMA according to a study published in British Journal of Pharmacology.

"Although users report that mephedrone produces similar psychoactive effects to MDMA, these two drugs produce different changes in the brain and the adverse effects they produce, particularly when ingested with other drugs, will therefore be different," says Professor Richard Green, who works at the School of Life Sciences at the University of Nottingham and is a Trustee of the British Pharmacological Society.

In their review of current scientific and medical research, Professor Green and his colleagues concluded that there were only two harmful effects on users associated with MDMA that mephedrone did not replicate: monoamine neurotoxicity in the brain and hyperthermia, both of which can be problems with MDMA.

Reports show that users of mephedrone tend to take repeated doses over a short period. This binge use may induce more severe adverse consequences including the risk that they could become dependent on the drug, say the researchers.

Preclinical studies of mephedrone in laboratory animals indicate a number of reasons why the drug can become more rewarding than MDMA:

• Mephedrone rapidly gets into the brain, so it gives a quick effect. It is then rapidly broken down and cleared. This spike is likely to lead to a range of acute withdrawal symptoms that do not occur with MDMA, which has slower brain penetration, metabolism and clearance.

• The way that mephedrone interacts with neurotransmitter transporters and/or receptors in the brain means that it has a greater stimulant action than MDMA giving the user a highly positive mood, but it does so in a way that will also tend to have a high psychostimulant and abuse liability. While MDMA also produces a positive mood, the way it operates causes less of a psychostimulant effect than mephedrone.

"One of the key messages for medics and drug users is that even though psychostimulant drugs may initially seem similar, the differences in the way they work can be critical," says Green, who published the findings in the British Journal of Pharmacology. "The good news is that the effects seen in animal studies generally reflect the reported changes in humans, which gives us confidence that the warning signals on the relative risks of different drugs from these studies need to be taken seriously."

Evelyn Martinez | EurekAlert!
Further information:
http://www.wiley.com

Further reports about: Green MDMA Recreational acute differences drugs effect hyperthermia mephedrone produce symptoms understand withdrawal

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>