Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Recognizing Faces, the Whole is Not Greater Than the Sum of Its Parts

12.03.2012
How do we recognize a face? To date, most research has answered “holistically”: We look at all the features—eyes, nose, mouth—simultaneously and, perceiving the relationships among them, gain an advantage over taking in each feature individually. Now a new study overturns this theory.
The researchers—Jason M. Gold and Patrick J. Mundy of the Indiana University and Bosco S. Tjan of the University of Southern California—found that people’s performance in recognizing a whole face is no better than their performance with each individual feature shown alone. “Surprisingly, the whole was not greater than the sum of its parts,” says Gold. The findings appear in the journal Psychological Science, which is published by the Association for Psychological Science.

To predict each participant’s best possible performance in putting together the individual features, the investigators used a theoretical model called an “optimal Bayesian integrator” (OBI). The OBI measures someone’s success in perceiving a series of sources of information—in this case, facial features—and combines them as if they were using the sources together just as they would when perceiving them one by one. Their score recognizing the combination of features (the whole face) should equal the sum of the individual-feature scores. If the whole-face performance exceeds this sum, it implies that the relationships among the features enhanced the information processing—that is, “holistic” facial recognition exists.

In the first experiment participants were shown fuzzy images of three male and three female faces. Then either one feature—a left or right eye, nose, or mouth—or all four in proper face-like relationships appeared on the screen. That image would disappear and, if they saw an eye, all six eyes would appear; if a whole face, six whole faces. The participants clicked on the feature or face they’d just seen. In a second experiment, the whole-face images were superimposed on face-shaped ovals—in case such context helps holistic recognition, as is often claimed. In both experiments, participants’ performance with the whole faces was no better than with the isolated features—and no better than the OBI—indicating that the facial features were not processed holistically when shown in combination.

“The OBI offers a clearly defined mathematical framework for studying what historically has been a rather loosely defined set of concepts,” says Gold.

The findings may offer promise in understanding the cognitive disorder prosopagnosia, the inability to recognize faces, and could also help in constructing better face-recognition software for security. But the real value, says Gold, is in basic research. “If you want to understand the complexities of the human mind, then understanding the basic processes that underlie how we perceive patterns and objects is an important part of that puzzle.”

For more information about this study, please contact: Jason M. Gold at jgold@indiana.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "The Perception of a Face Is No More Than the Sum of Its Parts" and access to other Psychological Science research findings, please contact Lucy Hyde at 202-293-9300 or lhyde@psychologicalscience.org.

Lucy Hyde | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>