Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Reasons to Be Nice: It’s Less Work for Everyone

10.03.2011
A polite act shows respect. But a new study of a common etiquette—holding a door for someone—suggests that courtesy may have a more practical, though unconscious, shared motivation: to reduce the work for those involved.

The research, by Joseph P. Santamaria and David A. Rosenbaum of Pennsylvania State University, is the first to combine two fields of study ordinarily considered unrelated: altruism and motor control. It is to be published in a forthcoming issue of Psychological Science, a journal of the Association for Psychological Science.

“The way etiquette has been viewed by Emily Post—that you’re being proper by following social codes—is undoubtedly part of it,” said psychology professor Rosenbaum. “Our insight is there is another contributor: the mental representation of other people’s physical effort. Substantial research in the field of motor control shows that people are good at estimating how much effort they and others

expend,” Rosenbaum continued. “We realized that this concept could be extended to a shared-effort model of politeness.”

The researchers videotaped people approaching and passing through the door of a university building. The tapes were analyzed for the relationships among several behaviors: Did the first person hold the

door for a follower or followers and for how long? How did the likelihood of holding the door depend on the distance between the first person at the door and whomever followed?

“The most important result,” Rosenbaum said, “was that when someone reached the door and two people followed, the first person at the door held the door longer than if only one person followed. The internal calculation on the part of the first arriver was, ‘My altruism will benefit more people, so I’ll hold the door longer.’”

Another finding: the followers who noticed the door-holder hastened their steps, helping to “fulfill the implicit pact” between themselves and the opener “to keep their joint effort below the sum of their individual door-opening efforts,” the authors write.

A more common explanation of why we extend a physical gesture of courtesy is what the researchers term the “critical distance” model: we do something for someone if she is simply near enough. But the researchers found that model insufficient. “We need a way of describing why there is a change of probability” both of doing the task and of expending more time at it, said Rosenbaum. Is the critical distance 10 feet? Why not 50 feet? What is “near enough?” And why wait longer if more people are following? “You still come back to the question of what the individuals are trying to achieve.”

Rosenbaum sees the shared-effort model as enhancing, not detracting from, our appreciation of good manners: “Here are people who will probably never see each other again,” he says, “but in this fleeting interaction, they reduce each others’ effort. This small gesture is uplifting for society.”

For more information about this study, please contact: David A. Rosenbaum at dar12@psu.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Etiquette and Effort: Holding Doors for Others" and access to other Psychological Science research findings, please contact Tiffany Harrington at 202-293-9300 or tharrington@psychologicalscience.org.

Tiffany Harrington | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>