Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-time feedback helps save energy and water

08.02.2017

Study by the Universities of Bonn and Bamberg: consumption when showering can be reduced by 22 percent

Those who take long showers use a great deal of water and energy. Yet people who enjoy taking long showers do not usually realize to what extent they are damaging the environment. However, if a clever measuring system shows current consumption, this immediately leads to increased efficiency.


The measuring devices are fitted below the shower head. They allow water consumption, water temperature and energy use to be seen at a glance. © Photo: Liliane Ableitner/University of Bamberg


The research team with the measuring device (from left): Prof. Thorsten Staake, Dr. Verena Tiefenbeck and Prof. Lorenz Götte. © Photo: Thorsten Staake/University of Bamberg

The consumption information available on the display is incentive enough to reduce water and energy consumption when showering on average by 22 per cent. This was shown by a study conducted by the Universities of Bonn and Bamberg, as well as ETH Zurich. The results have initially been published online in the journal Management Science. The print edition will be published soon.

Environmental protection is very popular within society, yet it is often lacking when it comes to implementation. Many want to protect natural resources, but lose sight of the aim in everyday life – for instance, when showering. When you stand underneath a pleasantly warm jet of water, you quickly forget how much water and energy have already disappeared down the drain.

“Most people only have a very vague idea of how energy- and water-intensive showering is,” says Prof. Lorenz Götte from the Institute of Applied Microeconomics at the University of Bonn, who previously taught in Lausanne.

“Many people think of switching lights off and more economical fridges when they think of saving energy. The average household in Germany and Switzerland consumes five and a half times as much energy when showering as for its entire lighting and four times as much as for the fridge and freezer together,” says the lead author Dr. Verena Tiefenbeck, who researches at the University of Bonn as well as at ETH Zürich.

Due to the energy intensity of heating water and the as yet unexhausted saving potential, a great deal more could be achieved in this area, adds Prof. Thorsten Staake, chair of the Energy Efficient Systems Group at the University of Bamberg. “The shower is an ideal starting point, because it’s where more than two thirds of a household’s hot water is required.”

How can the greatest amount of energy be saved when showering? For the three scholars from the Universities of Bamberg, Bonn and ETH Zürich, this concerns a very applied and also fundamental question of how resource-relevant behavioral changes can be brought about. In multiple experiments, a total of 700 one- and two-person households in Switzerland received intelligent systems from Elektrizitätswerk der Stadt Zürich (ewz) to measure their energy and water consumption when showering.

Smart systems show current energy and water consumption

The measuring devices were fitted below the shower head. They allow water consumption, water temperature and energy use to be seen at a glance. “These smart systems give the agent direct feedback about the consequences of their own showering behavior,” reports Prof. Staake. The measuring devices recorded the showering behavior of the subjects for around two months. A randomly selected proportion of the subjects was able to track live on the display how much energy and water they had used since the start of their shower, while other participants were not shown this information.

If the test subjects received immediate feedback via the measuring systems, energy consumption when showering fell on average by 22 percent. For people who take long showers, the savings even came to almost 30 percent. In a further investigation, the researchers tested whether additional saving behavior occurs when the test subjects received subsequent feedback on their previous consumption. “This subsequent information resulted in virtually no additional effect,” says Dr. Verena Tiefenbeck.

Nevertheless, the study into shower use shows that lasting behavioral changes occurred during the two months of the experiment. Summarizing their findings, professors Götte and Staake say, “Even over the course of weeks, no desensitizing effects were seen among the subjects.” Dr. Tiefenbeck adds that “The desired saving effects were just as great at the end of the observation period as at the beginning.”

Publication: Overcoming Salience Bias: How Real-Time Feedback Fosters Resource Conservation, Management Science, Publication on the Internet:
http://pubsonline.informs.org/doi/full/10.1287/mnsc.2016.2646

Media contact:

Prof. Lorenz Götte
Institute of Applied Microeconomics
University of Bonn
Tel. +49 (0)228/739284
E-mail: lorenz.goette@uni-bonn.de

Prof. Thorsten Staake
Energy Efficient Systems Group, University of Bamberg
Tel. +49 (0)951/863 2077
E-Mail: thorsten.staake@uni-bamberg.de

Dr. Verena Tiefenbeck
Department of Management, Technology and Economics
ETH Zürich
Tel. +41 44 632 39 53
E-Mail: vtiefenbeck@ethz.ch

Tanja Eisenach
Press officer, University of Bamberg
Tel.: +49 (0)951/863 1023
presse@uni-bamberg.de

Tanja Eisenach | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bamberg.de/

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>