Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Real-time feedback helps save energy and water


Study by the Universities of Bonn and Bamberg: consumption when showering can be reduced by 22 percent

Those who take long showers use a great deal of water and energy. Yet people who enjoy taking long showers do not usually realize to what extent they are damaging the environment. However, if a clever measuring system shows current consumption, this immediately leads to increased efficiency.

The measuring devices are fitted below the shower head. They allow water consumption, water temperature and energy use to be seen at a glance. © Photo: Liliane Ableitner/University of Bamberg

The research team with the measuring device (from left): Prof. Thorsten Staake, Dr. Verena Tiefenbeck and Prof. Lorenz Götte. © Photo: Thorsten Staake/University of Bamberg

The consumption information available on the display is incentive enough to reduce water and energy consumption when showering on average by 22 per cent. This was shown by a study conducted by the Universities of Bonn and Bamberg, as well as ETH Zurich. The results have initially been published online in the journal Management Science. The print edition will be published soon.

Environmental protection is very popular within society, yet it is often lacking when it comes to implementation. Many want to protect natural resources, but lose sight of the aim in everyday life – for instance, when showering. When you stand underneath a pleasantly warm jet of water, you quickly forget how much water and energy have already disappeared down the drain.

“Most people only have a very vague idea of how energy- and water-intensive showering is,” says Prof. Lorenz Götte from the Institute of Applied Microeconomics at the University of Bonn, who previously taught in Lausanne.

“Many people think of switching lights off and more economical fridges when they think of saving energy. The average household in Germany and Switzerland consumes five and a half times as much energy when showering as for its entire lighting and four times as much as for the fridge and freezer together,” says the lead author Dr. Verena Tiefenbeck, who researches at the University of Bonn as well as at ETH Zürich.

Due to the energy intensity of heating water and the as yet unexhausted saving potential, a great deal more could be achieved in this area, adds Prof. Thorsten Staake, chair of the Energy Efficient Systems Group at the University of Bamberg. “The shower is an ideal starting point, because it’s where more than two thirds of a household’s hot water is required.”

How can the greatest amount of energy be saved when showering? For the three scholars from the Universities of Bamberg, Bonn and ETH Zürich, this concerns a very applied and also fundamental question of how resource-relevant behavioral changes can be brought about. In multiple experiments, a total of 700 one- and two-person households in Switzerland received intelligent systems from Elektrizitätswerk der Stadt Zürich (ewz) to measure their energy and water consumption when showering.

Smart systems show current energy and water consumption

The measuring devices were fitted below the shower head. They allow water consumption, water temperature and energy use to be seen at a glance. “These smart systems give the agent direct feedback about the consequences of their own showering behavior,” reports Prof. Staake. The measuring devices recorded the showering behavior of the subjects for around two months. A randomly selected proportion of the subjects was able to track live on the display how much energy and water they had used since the start of their shower, while other participants were not shown this information.

If the test subjects received immediate feedback via the measuring systems, energy consumption when showering fell on average by 22 percent. For people who take long showers, the savings even came to almost 30 percent. In a further investigation, the researchers tested whether additional saving behavior occurs when the test subjects received subsequent feedback on their previous consumption. “This subsequent information resulted in virtually no additional effect,” says Dr. Verena Tiefenbeck.

Nevertheless, the study into shower use shows that lasting behavioral changes occurred during the two months of the experiment. Summarizing their findings, professors Götte and Staake say, “Even over the course of weeks, no desensitizing effects were seen among the subjects.” Dr. Tiefenbeck adds that “The desired saving effects were just as great at the end of the observation period as at the beginning.”

Publication: Overcoming Salience Bias: How Real-Time Feedback Fosters Resource Conservation, Management Science, Publication on the Internet:

Media contact:

Prof. Lorenz Götte
Institute of Applied Microeconomics
University of Bonn
Tel. +49 (0)228/739284

Prof. Thorsten Staake
Energy Efficient Systems Group, University of Bamberg
Tel. +49 (0)951/863 2077

Dr. Verena Tiefenbeck
Department of Management, Technology and Economics
ETH Zürich
Tel. +41 44 632 39 53

Tanja Eisenach
Press officer, University of Bamberg
Tel.: +49 (0)951/863 1023

Tanja Eisenach | idw - Informationsdienst Wissenschaft
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>