Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Readers Build Vivid Mental Simulations of Narrative Situations

30.01.2009
Brain processes stories as though they were real: A brain-imaging study is shedding light on what it means to "get lost" in a good book — suggesting that readers create vivid mental simulations of the sounds, sights, tastes and movements described in a textual narrative while simultaneously activating brain regions used to process similar experiences in real life.

A new brain-imaging study is shedding light on what it means to "get lost" in a good book — suggesting that readers create vivid mental simulations of the sounds, sights, tastes and movements described in a textual narrative while simultaneously activating brain regions used to process similar experiences in real life.

"Psychologists and neuroscientists are increasingly coming to the conclusion that when we read a story and really understand it, we create a mental simulation of the events described by the story," says Jeffrey M. Zacks, study co-author and director of the Dynamic Cognition Laboratory at Washington University in St. Louis.

Click the brain scans above to view a color-coded chart describing changes in brain activation during the reading of a brief narrative.

The study, forthcoming in the journal Psychological Science, is one of a series in which Zacks and colleagues use functional magnetic resonance imaging (fMRI) to track real-time brain activity as study participants read and process individual words and short stories.

Nicole Speer, lead author of this study, says findings demonstrate that reading is by no means a passive exercise. Rather, readers mentally simulate each new situation encountered in a narrative. Details about actions and sensation are captured from the text and integrated with personal knowledge from past experiences. These data are then run through mental simulations using brain regions that closely mirror those involved when people perform, imagine, or observe similar real-world activities.

"These results suggest that readers use perceptual and motor representations in the process of comprehending narrated activity, and these representations are dynamically updated at points where relevant aspects of the situation are changing," says Speer, now a research associate with The Western Interstate Commission for Higher Education (WICHE) Mental Health Program in Boulder, Colo. "Readers understand a story by simulating the events in the story world and updating their simulation when features of that world change."

In addition to Zacks, an associate professor of psychology in Arts and Sciences and of radiology in the School of Medicine at WUSTL, other co-authors for this study are Jeremy R. Reynolds, assistant professor of psychology at the University of Denver in Denver, Colo.; and Khena M. Swallow, a post-doctoral associate in psychology at the University of Minnesota. Reynolds, Swallow and Speer all graduated from the psychology doctoral program at WUSTL in the last several years.

Reading, one of the most important skills human beings can acquire, has been difficult to study using fMRI because researchers seldom have access to expensive scanning equipment for long periods of time. Reading long passages of text also poses challenges because participants must remain very still for the scans to be effective. In an effort to minimize eye movements, participants are immobilized within the brain-scanning device and presented with text one-word-at-a-time on an adjacent computer screen.

Previous research has shown that when people read isolated words or phrases involving vivid visual or motor contents, brain activity in sensory and motor brain regions specifically related to those contents increased. But this result might not be typical of normal reading — in the previous studies there was no story to try to understand, and participants sometimes had to make an explicit judgment about each word or phrase. In this study, Speer and colleagues used fMRI to look for evidence of mental simulation during the reading of extended stories. Each participant read four stories of less than 1500 words excerpted from a simple, 1940s-era book about the daily activities of a young boy. Participants were shown text passages on a computer screen that displayed one word at a time; reading all four stories took most participants about 40 minutes.

The researchers had carefully coded the stories so that they knew when important features of the story were changing. The features had been chosen based on previous studies of narrative reading, and were known to be important for comprehension. The researchers hypothesized that some brain regions would increase at several different feature changes, but that other brain regions would be selectively activated by only one feature change. This is what was found.

For example, changes in the objects a character interacted with (e.g., "pulled a light cord") were associated with increases in a region in the frontal lobes known to be important for controlling grasping motions. Changes in characters' locations (e.g., "went through the front door into the kitchen") were associated with increases in regions in the temporal lobes that are selectively activate when people view pictures of spatial scenes.

Overall, the data supported the view that readers construct mental simulations of events when reading stories.

The Speer et al. paper extends results reported by this group previously in Psychological Science. In the previous study, the researchers asked readers to divide the stories into meaningful events after reading them in the MRI scanner. The researchers then asked which parts of the brain increased in activity at event boundaries. The mental simulation results reported here line up strikingly with those regions. This suggests that readers construct a mental simulation as they read, and then divide that simulation into meaningful events when important features change.

Jeffrey Zacks
Director, Dynamic Cognition Laboratory, WUSTL
jzacks@wustl.edu
(314) 935-8454
Nicole Speer
Research associate, WICHE
nspeer@wiche.edu
(303) 541.0257

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu
http://www.wiche.edu
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>