Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Readers Build Vivid Mental Simulations of Narrative Situations

30.01.2009
Brain processes stories as though they were real: A brain-imaging study is shedding light on what it means to "get lost" in a good book — suggesting that readers create vivid mental simulations of the sounds, sights, tastes and movements described in a textual narrative while simultaneously activating brain regions used to process similar experiences in real life.

A new brain-imaging study is shedding light on what it means to "get lost" in a good book — suggesting that readers create vivid mental simulations of the sounds, sights, tastes and movements described in a textual narrative while simultaneously activating brain regions used to process similar experiences in real life.

"Psychologists and neuroscientists are increasingly coming to the conclusion that when we read a story and really understand it, we create a mental simulation of the events described by the story," says Jeffrey M. Zacks, study co-author and director of the Dynamic Cognition Laboratory at Washington University in St. Louis.

Click the brain scans above to view a color-coded chart describing changes in brain activation during the reading of a brief narrative.

The study, forthcoming in the journal Psychological Science, is one of a series in which Zacks and colleagues use functional magnetic resonance imaging (fMRI) to track real-time brain activity as study participants read and process individual words and short stories.

Nicole Speer, lead author of this study, says findings demonstrate that reading is by no means a passive exercise. Rather, readers mentally simulate each new situation encountered in a narrative. Details about actions and sensation are captured from the text and integrated with personal knowledge from past experiences. These data are then run through mental simulations using brain regions that closely mirror those involved when people perform, imagine, or observe similar real-world activities.

"These results suggest that readers use perceptual and motor representations in the process of comprehending narrated activity, and these representations are dynamically updated at points where relevant aspects of the situation are changing," says Speer, now a research associate with The Western Interstate Commission for Higher Education (WICHE) Mental Health Program in Boulder, Colo. "Readers understand a story by simulating the events in the story world and updating their simulation when features of that world change."

In addition to Zacks, an associate professor of psychology in Arts and Sciences and of radiology in the School of Medicine at WUSTL, other co-authors for this study are Jeremy R. Reynolds, assistant professor of psychology at the University of Denver in Denver, Colo.; and Khena M. Swallow, a post-doctoral associate in psychology at the University of Minnesota. Reynolds, Swallow and Speer all graduated from the psychology doctoral program at WUSTL in the last several years.

Reading, one of the most important skills human beings can acquire, has been difficult to study using fMRI because researchers seldom have access to expensive scanning equipment for long periods of time. Reading long passages of text also poses challenges because participants must remain very still for the scans to be effective. In an effort to minimize eye movements, participants are immobilized within the brain-scanning device and presented with text one-word-at-a-time on an adjacent computer screen.

Previous research has shown that when people read isolated words or phrases involving vivid visual or motor contents, brain activity in sensory and motor brain regions specifically related to those contents increased. But this result might not be typical of normal reading — in the previous studies there was no story to try to understand, and participants sometimes had to make an explicit judgment about each word or phrase. In this study, Speer and colleagues used fMRI to look for evidence of mental simulation during the reading of extended stories. Each participant read four stories of less than 1500 words excerpted from a simple, 1940s-era book about the daily activities of a young boy. Participants were shown text passages on a computer screen that displayed one word at a time; reading all four stories took most participants about 40 minutes.

The researchers had carefully coded the stories so that they knew when important features of the story were changing. The features had been chosen based on previous studies of narrative reading, and were known to be important for comprehension. The researchers hypothesized that some brain regions would increase at several different feature changes, but that other brain regions would be selectively activated by only one feature change. This is what was found.

For example, changes in the objects a character interacted with (e.g., "pulled a light cord") were associated with increases in a region in the frontal lobes known to be important for controlling grasping motions. Changes in characters' locations (e.g., "went through the front door into the kitchen") were associated with increases in regions in the temporal lobes that are selectively activate when people view pictures of spatial scenes.

Overall, the data supported the view that readers construct mental simulations of events when reading stories.

The Speer et al. paper extends results reported by this group previously in Psychological Science. In the previous study, the researchers asked readers to divide the stories into meaningful events after reading them in the MRI scanner. The researchers then asked which parts of the brain increased in activity at event boundaries. The mental simulation results reported here line up strikingly with those regions. This suggests that readers construct a mental simulation as they read, and then divide that simulation into meaningful events when important features change.

Jeffrey Zacks
Director, Dynamic Cognition Laboratory, WUSTL
jzacks@wustl.edu
(314) 935-8454
Nicole Speer
Research associate, WICHE
nspeer@wiche.edu
(303) 541.0257

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu
http://www.wiche.edu
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>