Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rational or random? Professor models how people send e-mails

24.11.2008
In the last 10 years, e-mail has gone from a novelty to a necessity. What was once a pastime is now an essential form of communication, with many people opening their inboxes to find dozens of e-mails waiting.

But how do people respond to those e-mails? Do they act rationally, responding to the most important first, making sure the process is efficient? Or do they send e-mails randomly, when they are at their computers or when they have time, without any regard to efficiency?

These are questions that Luís Amaral, associate professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science at Northwestern University, and his collaborators set out to answer. After studying e-mails sent and received from more than 3,000 e-mail accounts at a European university during a three-month period, they created a mathematical model that shows people send e-mail randomly, but in cycles.

The findings are published online by the Proceedings of the National Academy of Sciences.

Amaral said he was inspired to create such an e-mail model after a recent paper said that the rational model -- where people respond to e-mails in the most efficient way -- was the correct model.

"I was not convinced, since I don't do it in a rational way," he said. But if a random model was correct, there would be a typical interval between e-mails -- which, when Amaral looked at the data, wasn't the case. He wondered if it was possible for people to send e-mail randomly but still have non-random intervals where they didn't send e-mail.

The answer, it turned out, was fairly simple: People don't send e-mails when they are sleeping.

"During the day, you send e-mails, but then you go home, or go away for the weekend, and you don't send e-mails," he said. "These data were from a few years ago, and in Europe, this was especially the case, since many people didn't have the Internet at home."

The result was a model in which people send e-mails at random, but the probability of them sending e-mails during a given period depended on what that period was. If it was in the middle of the night, the probability was near zero. If it was during the weekend, the probability was much lower than during weekdays.

"The model explains all the data, and it shows that people have cycles in which they use certain services," Amaral says. "You can then make predictions based on those cycles to know when people are going to request a service. Even though it's random, there are peaks in demand that don't look random."

Other businesses and services could use such a model.

"If you know how people access that service, you can better plan how much capacity you need, when you need it, and how to best engineer your system to supply that capacity," Amaral said. "It also teaches you how to interact with the system -- a good time to send an e-mail is just about the time that the person has arrived at work."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: RATIONAL Random send e-mail randomly studying e-mails sent

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>