Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Eye Movement (REM) Study Shows Brain Functions Same Way Awake Or Asleep

30.10.2008
Johns Hopkins researchers have found strong evidence supporting the view that the sleeping mind functions the same as the waking mind — a discovery that could significantly alter basic understanding of the normal and abnormal brain.

The evidence comes from a study, to appear online this month in the journal Human Brain Mapping, of 11 healthy male and female participants whose rapid eye movements (REM) in “dream” sleep were timed using a video camera. The REM tracking was accompanied by special MRI images designed to visualize brain activity.

Results revealed activity in areas of the brain that control sight, hearing, smell, touch, balance and body movements.

“This is the first time we have been able to detect brain activity associated with REM in areas that control senses other than sight,” says lead researcher Charles Hong, M.D., Ph.D., assistant professor in the Department of Psychiatry and Behavioral Sciences at Johns Hopkins University School of Medicine. “After comparing our data to other studies on awake people, we learned that our findings lend great support to the view that the waking brain functions in a similar way.”

Hong says this method may allow simultaneous examination of major brain systems that are activated when REMs occur and are reported to be abnormal in some psychiatric diseases.

In addition, Hong says, their method may be useful in people with Alzheimer’s disease or schizophrenia and even infants. In awake studies, it’s required that subjects follow instructions and perform tasks to stimulate brain activity — tasks that these groups might have difficulty completing.

Their method may also be useful in people with movement disorders like Parkinson’s disease.

“Head movements can create false data in MRI studies,” says Hong, “while conveniently, REM sleep greatly reduces muscle tone, thus head movements.”

Finally, Hong says that in order to obtain reliable results from awake participants it would require studying multiple subjects.

“In contrast, only six minutes of MRI data from a single participant in our REM study produced robust results,” says Hong.

He added that the ability to draw results from a single person permits researchers to compare results with other data that is specific to an individual.

“We can also analyze changes over time within a single person with a psychiatric disease. Our method may make a powerful tool to study the development of the brain starting from birth,” he says.

Other researchers from Johns Hopkins University School of Medicine include James C. Harris, Godfrey D. Pearlson, Jin-Suh Kim and Vince D. Calhoun of the Department of Psychiatry and Behavioral Sciences; Xavier Golay, Joseph S. Gillen, Peter C. M. van Zijl and James J. Pekar of the Department of Radiology and F. M. Kirby of the Research Center for Functional Brain Imaging, Kennedy Krieger Institute; Daniel J. Simmonds of the Department of Developmental Cognitive Neurology and David S. Zee of the Department of Neurology. James H. Fallon of the Department of Anatomy and Neurobiology, University of California, Irvine also contributed to this study.

Eric Vohr | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>