Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radar Engineers Aid Largest National Tornado Study

28.04.2009
As part of the most ambitious study ever launched to find out how tornadoes form and how to predict them more accurately, engineers from the Microwave Remote Sensing Laboratory are deploying mobile Doppler radar systems, one of which offers the highest spatial resolution ever, to the Great Plains.

As part of the largest, most ambitious attempt ever launched to figure out how tornadoes form and how to predict them more accurately, engineers from the University of Massachusetts Amherst this week are readying two special mobile Doppler radar systems for deployment to the Great Plains.

The national project known as Verification of the Origins of Rotation in Tornadoes Experiment 2, or VORTEX2, will enlist more than 50 scientists and 10 mobile radars to sample the wind, temperature and moisture environments in tornado-spawning storms in greater detail than before. One of the UMass Amherst units brings the highest spatial resolution of any mobile Doppler radar in the nation to address the study goals.

From early May to mid-June when these severe storms are most common, the $11.9 million project will look at events that have long been hidden behind rain and hail within supercell thunderstorms. With other specialists converging on one of the nation’s “tornado alleys,” the UMass Amherst group will use truck-mounted Doppler radars they’ve developed to “see” inside the violent storms at ground level, offering one of the most precise radars ever used for tornado detection, far more precise than those mounted on high towers or on satellites.

Electrical and computer engineering professor Stephen Frasier, director of the Microwave Remote Sensing Laboratory (MIRSL), leads the group of research engineer Pei-Sang Tsai and two graduate students taking part this spring. With any luck, they’ll capture data from a handful of actual tornadoes as they form, to help meteorologists understand tornado origin, structure and evolution. Another overall VORTEX2 goal is to build a complete observation network around and under a supercell storm.

It has been only in the past 15 years that results from the first VORTEX study in 1994-1995 allowed scientists to document the entire life-cycle of a tornado for the first time in history, according to the National Oceanic and Atmospheric Administration (NOAA). An important finding from that original experiment, according to an NSF program director, is that the factors responsible for causing tornadoes happen on smaller time and space scales than scientists had thought.

An exciting aspect of VORTEX2 is that to work most effectively some of the radars including one of the UMass Amherst rigs must be deployed quite close, within a mile or two, of tornadoes embedded in monster storms that can be 50 miles wide. Peril is reduced by approaching storms from the side, says Tsai, and overall “it’s not that dangerous because we know when to run. We keep the engine running in case the storm suddenly turns toward us,” she adds.

Tsai and Frasier explain that the two UMass Amherst Doppler radars send different signals into a storm, reflecting off water droplets or debris and returning data at either a fine or more coarse resolution. For example, the high-frequency 95 GHz W-band radar provides “the highest spatial resolution of all existing mobile Doppler radars,” Frasier notes. It can be very narrowly focused “because tornadoes are relatively small targets.” Also, W-band radar can better image internal tornado structures.

For best results, mobile W-band radar should be deployed quite close to a storm but not directly in its path, a mile or two to the side. Inside the truck, the engineer uses the radar to measure wind speed, density of raindrops, wind shear and other variables, Tsai adds. Frasier says this radar is critical to VORTEX2 because “it provides the best possible opportunity to map the wind field at the lowest levels of tornadoes. It also has the best chance to document the structure of multiple, sub-tornado-scale vortices, which are thought to cause much of the localized, extreme damage in some tornadoes.”

The other MIRSL truck, meanwhile, beams a 9.5 GHz signal known as X-band polarimetric radar at thunderheads from many miles away, to see the whole storm at once. This radar can better penetrate rain, providing information on the location and density of hail, rain and debris inside a storm, which is “essential to separate rain from debris,” says Frasier. Wind data from the X-band radar “will also be used in conjunction with data from the other X-band radars in the field to do multiple-Doppler analysis.”

The two graduate students on the UMass Amherst team this season are Vijay Venkatesh and Krzysztof Orzel and this trip will be Orzel’s first. “I’m really excited about VORTEX2 and I can’t wait ‘til we leave,” he says, “but it’s also busy. We have a great number of tiny details to attend to, to prepare for the expedition.”

For Venkatesh, VORTEX2 will be his second tornado study experience. He knows it means spending 15 hours a day driving hundreds of miles toward promising storm cells. “We usually pack two to three meals because it gets too intense to stop for a meal once the chase begins,” he says. “A team of radars leaves around noon and we drive until we reach our target region. We watch the weather events unfold, collect data with our radars, and are back around 2 or 3 a.m. to catch some sleep.” He adds, “On one hand, it is good for our research if we see a tornado. On the other hand, I was at Greensburg, Kansas, a year after the EF-5 storm wrecked their town. There was a severe storm watch in the area at the time, and you could see the concern on the faces of the local folks. It was natural for us to hope we didn’t see anything that day.”

VORTEX2 is supported by NOAA, the National Science Foundation, 10 universities and three nonprofits in 2009-2010, to provide forecasters with more tools to improve tornado warning times and short-term severe weather alerts.

Stephen Frasier | Newswise Science News
Further information:
http://www.umass.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>