Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green Routing" Can Cut Car Emissions Without Significantly Slowing Travel Time, Buffalo Study Finds

15.12.2011
Researcher says GPS systems could one day enable drivers to choose the "greenest" path to their destination

The path of least emissions may not always be the fastest way to drive somewhere. But according to new research from the University at Buffalo, it's possible for drivers to cut their tailpipe emissions without significantly slowing travel time.

In detailed, computer simulations of traffic in Upstate New York's Buffalo Niagara region, UB researchers Adel Sadek and Liya Guo found that green routing could reduce overall emissions of carbon monoxide by 27 percent for area drivers, while increasing the length of trips by an average of just 11 percent.

In many cases, simple changes yielded great gains.

Funneling cars along surface streets instead of freeways helped to limit fuel consumption, for instance. Intelligently targeting travelers was another strategy that worked: Rerouting just one fifth of drivers -- those who would benefit most from a new path -- reduced regional emissions by about 20 percent.

Sadek, a transportation systems expert, says one reason green routing is appealing is because it's a strategy that consumers and transportation agencies could start using today.

"We're not talking about replacing all vehicles with hybrid cars or transforming to a hydrogen-fuel economy -- that would take time to implement," said Sadek, an associate professor of civil, structural and environmental engineering. "But this idea, green routing, we could implement it now."

In the near future, GPS navigation systems and online maps could play an important role in promoting green routing, Sadek said. Specifically, these systems and programs could use transportation research to give drivers the option to choose an environmentally friendly route instead of the shortest route.

Sadek and Guo, a PhD candidate, presented their research on green routing at the 18th World Congress on Intelligent Transportation Systems in October.

In the UB study on green routing, the researchers tied together two computer models commonly known as "MOVES" and "TRANSIMS."

The Motor Vehicle Emission Simulator (MOVES), created by the Environmental Protection Agency, estimates emissions. The Transportation Analysis and Simulation System (TRANSIMS) simulates traffic in great detail, taking into account information including the location and pattern of signals; the grade of the road; and the trips people take at different times of day.

After incorporating Buffalo-specific data into TRANSIMS, Sadek and Guo ran a number of simulations, rerouting travelers in new ways each time.

After running the models numerous times, the researchers reached a "green-user equilibrium" -- a traffic pattern where all drivers are traveling along optimal routes. With the system in equilibrium, moving a commuter from one path to another would increase a user's overall emissions by creating more congestion or sparking another problem.

The simulations were part of a broader study Sadek is conducting on evaluating the likely environmental benefits of green routing in the region. His project is one of seven that the U.S. Department of Transportation has funded through a Broad Agency Announcement that aims to leverage intelligent transportation systems to reduce the environmental impact of transportation.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Related Stories:

Sustainable Transportation is Focus of UB Professor's IBM Grant: http://www.buffalo.edu/news/12535

UB Transportation Project Could Help Region Manage Traffic During Bad Weather: http://www.buffalo.edu/news/12069

Related Links:

U.S. Department of Transportation Broad Agency Announcement on Intelligent Transportation Systems: http://www.its.dot.gov/aeris/baa_factsheet.htm

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>