Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green Routing" Can Cut Car Emissions Without Significantly Slowing Travel Time, Buffalo Study Finds

15.12.2011
Researcher says GPS systems could one day enable drivers to choose the "greenest" path to their destination

The path of least emissions may not always be the fastest way to drive somewhere. But according to new research from the University at Buffalo, it's possible for drivers to cut their tailpipe emissions without significantly slowing travel time.

In detailed, computer simulations of traffic in Upstate New York's Buffalo Niagara region, UB researchers Adel Sadek and Liya Guo found that green routing could reduce overall emissions of carbon monoxide by 27 percent for area drivers, while increasing the length of trips by an average of just 11 percent.

In many cases, simple changes yielded great gains.

Funneling cars along surface streets instead of freeways helped to limit fuel consumption, for instance. Intelligently targeting travelers was another strategy that worked: Rerouting just one fifth of drivers -- those who would benefit most from a new path -- reduced regional emissions by about 20 percent.

Sadek, a transportation systems expert, says one reason green routing is appealing is because it's a strategy that consumers and transportation agencies could start using today.

"We're not talking about replacing all vehicles with hybrid cars or transforming to a hydrogen-fuel economy -- that would take time to implement," said Sadek, an associate professor of civil, structural and environmental engineering. "But this idea, green routing, we could implement it now."

In the near future, GPS navigation systems and online maps could play an important role in promoting green routing, Sadek said. Specifically, these systems and programs could use transportation research to give drivers the option to choose an environmentally friendly route instead of the shortest route.

Sadek and Guo, a PhD candidate, presented their research on green routing at the 18th World Congress on Intelligent Transportation Systems in October.

In the UB study on green routing, the researchers tied together two computer models commonly known as "MOVES" and "TRANSIMS."

The Motor Vehicle Emission Simulator (MOVES), created by the Environmental Protection Agency, estimates emissions. The Transportation Analysis and Simulation System (TRANSIMS) simulates traffic in great detail, taking into account information including the location and pattern of signals; the grade of the road; and the trips people take at different times of day.

After incorporating Buffalo-specific data into TRANSIMS, Sadek and Guo ran a number of simulations, rerouting travelers in new ways each time.

After running the models numerous times, the researchers reached a "green-user equilibrium" -- a traffic pattern where all drivers are traveling along optimal routes. With the system in equilibrium, moving a commuter from one path to another would increase a user's overall emissions by creating more congestion or sparking another problem.

The simulations were part of a broader study Sadek is conducting on evaluating the likely environmental benefits of green routing in the region. His project is one of seven that the U.S. Department of Transportation has funded through a Broad Agency Announcement that aims to leverage intelligent transportation systems to reduce the environmental impact of transportation.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Related Stories:

Sustainable Transportation is Focus of UB Professor's IBM Grant: http://www.buffalo.edu/news/12535

UB Transportation Project Could Help Region Manage Traffic During Bad Weather: http://www.buffalo.edu/news/12069

Related Links:

U.S. Department of Transportation Broad Agency Announcement on Intelligent Transportation Systems: http://www.its.dot.gov/aeris/baa_factsheet.htm

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>