Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum theory reveals puzzling pattern in how people respond to some surveys


A theory usually used in physics may help explain human behavior

Researchers used quantum theory – usually invoked to describe the actions of subatomic particles – to identify an unexpected and strange pattern in how people respond to survey questions.

By conventional standards, the results are surprising: The scientists found the exact same pattern in 70 nationally representative surveys from Gallup and the Pew Research center taken from 2001 to 2011, as well as in two laboratory experiments. Most of the national surveys included more than 1,000 respondents in the United States.

"Human behavior is very sensitive to context. It may be as context sensitive as the actions of some of the particles that quantum physicists study," said Zheng Wang, lead author of the study and associate professor of communication at The Ohio State University.

"By using quantum theory, we were able to predict a surprising regularity in human behavior with unusual accuracy for the social sciences in a large set of different surveys."

The study appears online in the Proceedings of the National Academy of Sciences. Wang conducted the study with Tyler Solloway of Ohio State, and Richard Shiffrin and Jerome Busemeyer of Indiana University.

These new findings involved an issue that has long faced researchers using survey data or any self-report data: question-order effects. Scientists have known that the order in which some questions are asked on a survey can change how people respond. That's why survey organizations normally change the order of questions between different respondents, hoping to cancel out this effect.

"Researchers have thought of these question-order effects as some kind of unexplainable carry-over effects or noise," Wang said. "But our results suggest that some of these effects may not be mere nuisance, but actually are something more essential to human behavior."

Take, for example, one of the surveys used in the study. This was a Gallup poll that asked Americans, among other questions, whether Bill Clinton was honest and trustworthy and whether Al Gore was honest and trustworthy.

The survey changed the order in which these questions were asked between respondents and, as expected, there were question-order effects found. When respondents were asked about Clinton first, 49 percent said that both Clinton and Gore were trustworthy. But when respondents were asked about Gore first, 56 percent said that both were trustworthy.

The pattern that quantum theory predicted – and that the researchers found – was that the number of people who switch from "yes-yes" to "no-no" when the question order is reversed must be offset by the number of people who switch in the opposite direction.

Indeed, in this case, the number of people who said "no-no" – that both Clinton and Gore were not trustworthy – went from 28 percent when the Clinton question was asked first to 21 percent when Gore was asked about first.

That 7 percent decline essentially cancels out the 7 percent increase in the number of people who said "yes-yes" when the question order was reversed.

Likewise, the number of people who switched from "yes-no" to "no-yes" was offset by the number of people who switched in the opposite direction.

The researchers called this phenomenon "quantum question equality." They found it in every one of the surveys studied.

"When you think about it from our normal social science perspective, the finding is very bizarre," Wang said. "There's no reason to expect that people would always change their responses in such a systematical way, from survey to survey to create this pattern."

But from a quantum perspective, the finding makes perfect sense, Wang said. "It is exactly what we would have predicted from quantum theory. We mathematically derived this precise prediction of quantum question equality from quantum theory before we looked at any data. This had to be true if our theory is right."

It had to be true according to what is called the law of reciprocity in quantum theory, she said. Like much of quantum theory, the law of reciprocity is complex and difficult for most people to understand. But it has to do with the transition from one state of a system to another. In this case, the transition is from a state answering questions about Clinton to a new state answering questions about Gore.

Wang said that quantum question equality explains only this very specific situation in which two questions are asked back-to-back with no other information given in between.

The researchers illustrate the difference with the example of another national survey, not among the 70 studied, that asked whether disgraced former baseball players Pete Rose and "Shoeless" Joe Jackson should be admitted to the Baseball Hall of Fame. The order in which people were asked about the two players was varied to deal with the question-order effects. But the results from this survey didn't show, as predicted by the researchers, the pattern found in the 70 surveys in the study.

That's because in between asking each question, the surveyors introduced new information by explaining to participants who these baseball players were and why there was a controversy about whether they should be admitted to the Hall of Fame.

"The simple fact that participants were given new information affects how they answer and means that quantum question equality won't hold true for cases like this," she said.

Wang said one of the most important aspects of the study was that quantum theory allowed the researchers to attain a level of exactitude rarely found when studying human behavior.

"Usually, in the social sciences we're talking about parameters: If we can predict that one factor is always larger or smaller than another, we consider that a strong finding," she said.

"But here we found a quite precise answer that is always nearly zero – the number of people who switch an answer one way are always offset by the number of people who switch in the opposite direction. That number never changed. In other words, their difference is always nearly zero. And that level of exactness is almost never found in social science research."

The larger question brought up by this study is "why?" Why must the number of people who switch from "yes-yes" to "no-no" when question order is reversed be offset by the number of people who switch in the opposite direction?

Wang said there is nothing yet proposed in standard psychological theory that would explain why this is true.

"People may reason according to different rules other than standard probability that are commonly used in social sciences. Our findings support the idea that people reason according to quantum rules instead."


This study was supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.

Contact: Zheng Wang, (614) 292-2055;

Written by Jeff Grabmeier, (614) 292-8457;

Zheng Wang | Eurek Alert!

Further reports about: Human Behavior quantum theory subatomic particles

More articles from Studies and Analyses:

nachricht New Formula for Life-Satisfaction
01.10.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Carbon storage in soils: Climate vs. Geology
14.09.2015 | Universität Augsburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>