Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality of white matter in the brain is crucial for adding and multiplying

28.01.2014
A new study led by Professor Bert De Smedt (Faculty of Psychology and Educational Sciences, KU Leuven) has found that healthy 12-year-olds who score well in addition and multiplication have higher-quality white matter tracts. This correlation does not appear to apply to subtraction and division.

‘Grey’ cells process information in the brain and are connected via neural pathways, the tracts through which signals are transferred.


The arcuate fasciculus anterior (green) is a neural pathway connecting brain regions often used for arithmetic. A positive correlation was found between the quality of the white matter sheathing the pathway and proficiency in adding and multiplying. ©LVB

"Neural pathways are comparable to a bundle of cables. These cables are surrounded by an isolating sheath: myelin, or 'white matter'. The thicker the isolating sheath and the more cables there are, the more white matter. And the more white matter, the faster the signals are transferred," explains educational neuroscientist Bert de Smedt.

While the correlation between arithmetic and white matter tracts linking certain brain regions is known, very little research has been done to test this correlation in normally-developing children. Nor has previous research teased out differences in neuroactivity when carrying out different arithmetic operations, e.g., adding, subtracting, multiplying and dividing.

In this study, the researchers had 25 children solve a series of different arithmetic operations while undergoing a brain scan. They then compared the quality of the children’s white matter tracts with their arithmetic test performance.

"We found that a better quality of the arcuate fasciculus anterior – a white matter tract that connects brain regions often used for arithmetic – corresponds to better performance in adding and multiplying, while there is no correlation for subtracting and dividing.”

“A possible explanation for this is that this white matter bundle is involved in rote memorization, whereas when we subtract and divide, such memorization plays less of a role. When subtracting and dividing we are more likely to use intermediary steps to calculate the solution, even as adults."

Nursery rhymes

These findings also add insight into the link between reading and arithmetic, explains Professor De Smedt: "Reading proficiency and arithmetic proficiency often go hand-in-hand. The white matter tract that we studied also plays an important role in reading: when we learn to read, we have to memorize the correspondence between particular letters and the sound they represent. It is likely that a similar process occurs for addition and multiplication. Just think of the notorious times-table drills we all memorized as schoolchildren; it is almost like learning a nursery rhyme. Some of us can even auto-recall these sums."

"This also might explain why we often see arithmetic problems in children with dyslexia. Likewise, children with dyscalculia often have trouble reading," says Professor De Smedt.

The researchers now aim to explore how these results relate to children with impairments such as dyscalculia or head trauma. In a next step, the team will also investigate how white matter tracts can be strengthened through extra arithmetic training.

The study "Left fronto-parietal white matter correlates with individual differences in children's ability to solve additions and multiplications: A tractography study" by Leen Van Beek, Pol Ghesquière, Lieven Lagae and Bert De Smedt is published in the journal NeuroImage and is available online at http://www.sciencedirect.com/science/article/pii/S1053811913012494.

Bert De Smedt | EurekAlert!
Further information:
http://www.kuleuven.be
http://www.kuleuven.be/english/news/quality-of-white-matter-in-the-brain-is-crucial-for-adding-and-multiplying

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>