Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a price tag on the 2° climate target

02.07.2014

Addressing climate change will require substantial new investment in low-carbon energy and energy efficiency – but no more than what is currently spent on today’s fossil-dominated energy system, according to new research from the International Institute for Applied Systems Analysis (IIASA) and partners.

To limit climate change to 2° Celsius, low-carbon energy options will need additional investments of about US $800 billion a year globally from now to mid-century, according to a new study published in the journal Climate Change Economics. But much of that capital could come from shifting subsidies and investments away from fossil fuels and associated technologies. Worldwide, fossil subsidies currently amount to around $500 billion per year.


Accomplishing a major transition in energy systems from fossil fuels to renewable energy requires substantial investment, a new study shows.

© kreicher istockphoto.com

“We know that if we want to avoid the worst impacts of climate change, we need to drastically transform our energy system,” says IIASA researcher David McCollum, who led the study. “This is the first comprehensive analysis to show how much investment capital is needed to successfully make that transition.”

The study, part of a larger EU research project examining the implications and implementation needs of climate policies consistent with the internationally agreed 2° C target, compared the results from six separate global energy-economic models, each with regional- and country-level detail. The authors examined future scenarios for energy investment based on a variety of factors, including technology progress, efficiency potential, economics, regional socio-economic development, and climate policy. 

Investments in clean energy currently total around $200 to 250 billion per year, and reference scenarios show that with climate policies currently on the books, this is likely to grow to around $400 billion. However, the amount needed to limit climate change to the 2° target amounts to around $1200 billion, the study shows.

The energy investments needed to address climate change continue to be an area of large uncertainty. By comparing the results from multiple models, the scientists were able to better define the costs of addressing climate change.

“Nearly all countries say that they’re on board with the 2° target; some have even made commitments to reduce their greenhouse gas emissions. But until now, it hasn’t been very clear how to get to that point, at least from an investment point of view. It’s high time we think about how much capital is needed for new power plants, biofuel refineries, efficient vehicles, and other technologies—and where those dollars need to flow—so that we get the emissions reductions we want,” says McCollum.

IIASA Energy Program Director Keywan Riahi, another study co-author and project leader, says, “Given that energy-supply technologies and infrastructure are characterized by long lifetimes of 30 to 60 years or more, there’s a considerable amount of technological inertia in the system that could impede a rapid transformation. That’s why the energy investment decisions of the next several years are so important: because they will shape the direction of the energy transition path for many years to come.”

The study shows that the greatest investments will be needed in rapidly developing countries, namely in Asia, Latin America, and Sub-Saharan Africa.

“Energy investment in these countries is poised to increase substantially anyway. But if we’re serious about addressing climate change, we must find ways to direct more investment to these key regions. Clever policy designs, including carbon pricing mechanisms, can help.” says Massimo Tavoni, researcher at the Fondazione Eni Enrico Mattei, a climate research center in Italy, and overall coordinator of the LIMITS project, of which the new study is a part.

The researchers note that their analysis of future investment costs does not attempt to quantify the potentially major fuel savings from switching from fossil fuels to renewable sources, such as wind and solar energy. As shown in the IIASA-led Global Energy Assessment, such savings could offset a considerable share of increased investment on a global scale.

This study provided an important input into the Intergovernmental Panel on Climate Change Fifth Assessment Report, Working Group III, Chapter 16 on Cross-cutting Investment and Finance Issues.

Reference
McCollum D, Nagai Y, Riahi K, Marangoni G, Calvin K, Pietzcker R, Van Vliet J, van der Zwaaan B. (2014). Energy investments under climate policy: a comparison of global models. Climate Change Economics Vol. 04, No. 04. DOI: 10.1142/S2010007813400101

About the LIMITS project
This study was conducted as part of the Low Climate Impact Scenarios and the Implications of Required Tight Emissions Control Strategies (LIMITS) project, a European Union Seventh Framework Program (FP-7)-supported collaboration between the International Institute for Applied Systems Analysis (IIASA), the Fondazione Eni Enrico Mattei (FEEM) in Italy, the Potsdam Institute for Climate Impact Research (PIK) in Germany, the, the Joint Research Centre of the European Commission, Central European University, the National Development and Reform Commission Energy Research Institute in China, the Indian Institute of Management (IIM), the National Institute for Environmental Studies (NIES) in Japan, and the Pacific Northwest National Laboratory (PNNL) in the US.

For more information contact:

David McCollum
Research Scholar
Energy
+43(0) 2236 807 586
mccollum@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Weitere Informationen:

http://www.iiasa.ac.at/web/home/about/news/20140702-ene-LIMITS.html

Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis Climate Climate change Energy IIASA Italy emissions investments renewable energy

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>