Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pure fructose frequently confused with high fructose corn syrup

New studies, ongoing misunderstanding can lead to consumer confusion

As researchers continue to examine the role of sweeteners in the diet, it's important that people understand the differences among various ingredients used in scientific studies, according to the Corn Refiners Association (CRA).

Interchanging two distinctly different ingredients, such as pure fructose and high fructose corn syrup, creates factually incorrect conclusions and misleads consumers.

Recent studies using pure fructose that purport to show that the body processes high fructose corn syrup differently than other sugars due to fructose content are a classic example of this problem because pure fructose cannot be extrapolated to high fructose corn syrup. The abnormally high levels of pure fructose used in these studies are not found in the human diet.

Fructose consumption at normal human dietary levels and as part of a balanced diet has not been shown to yield such results. Moreover, human fructose intake is nearly always accompanied by the simultaneous and equivalent intake of glucose – a critical and distinguishing factor from pure fructose used in these studies.

Following are some facts about high fructose corn syrup and fructose:

High fructose corn syrup contains approximately equal ratios of fructose and glucose. Table sugar also contains equal ratios of fructose and glucose. High fructose corn syrup and sugar are equally sweet and both contain four calories per gram.

Fructose is a natural, simple sugar commonly found in fruits and honey. The absence of glucose makes pure fructose fundamentally different from high fructose corn syrup.

Common dietary sources of fructose and glucose include fruits, vegetables, nuts and sweeteners (sugar, honey, high fructose corn syrup, fruit juice concentrates and agave nectar).

There is no meaningful difference in how the body metabolizes table sugar and high fructose corn syrup. Once the combination of glucose and fructose found in high fructose corn syrup and sucrose are absorbed into the blood stream, the two types of sweetener appear to be metabolized similarly using well-characterized metabolic pathways.

High fructose corn syrup meets the U.S. Food and Drug Administration's requirements for use of the term "natural." It is made from corn, a natural grain product and contains no artificial or synthetic ingredients or color additives.

The American Medical Association in June 2008 helped put to rest a common misunderstanding about high fructose corn syrup and obesity, stating that "high fructose syrup does not appear to contribute to obesity more than other caloric sweeteners." Even former critics of high fructose corn syrup dispelled long-held myths and distanced themselves from earlier speculation about the sweetener's link to obesity in a comprehensive scientific review published in a recent supplement of the American Journal of Clinical Nutrition (2008 Vol. 88).

Audrae Erickson | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>