Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Psychiatric disorders linked to a protein involved in the formation of long-term memories

17.06.2013
Virginia Tech scientists find psychiatric disorders may be linked to protein involved in memory formation

Researchers have discovered a pathway by which the brain controls a molecule critical to forming long-term memories and connected with bipolar disorder and schizophrenia.

The discovery was made by a team of scientists led by Alexei Morozov, an assistant professor at the Virginia Tech Carilion Research Institute.

The mechanism – a protein called Rap1 – controls L-type calcium channels, which participate in the formation of long-term memories. Previous studies have also linked alterations in these ion channels to certain psychiatric disorders. The discovery of the channels' regulation by Rap1 could help scientists understand the physiological genesis of bipolar disorder and schizophrenia.

"People with genetic mutations affecting L-type calcium channels have higher rates of bipolar disorder and schizophrenia," said Morozov. "This suggests that there might be a relationship between the activation of L-type calcium channels and these psychiatric disorders. Understanding how these ion channels are controlled is the first step to determining how their functioning or malfunctioning affects mental health."

A single neuron in the brain can have thousands of synapses, each of which can grow, strengthen, weaken, and change structurally in response to learning new information. Electric signals traveling from neuron to neuron jump across these synapses through chemical neurotransmitters. The release of these chemicals is caused by the flow of electrically charged atoms through a particular subset of ion channels known as voltage-gated calcium channels.

Previous studies have shown that blocking these ion channels inhibits the formation of long-term memories. Although it was known that L-type calcium channels are activated in response to learning, how they are controlled was a mystery.

In the experiment, Morozov and colleagues knocked out the gene responsible for coding the enzyme Rap1, which he suspected played a role in activating L-type calcium channels. The researchers then used live imaging techniques to monitor the release of neurotransmitters and electron microscopy to visualize L-type channels at synapses. They discovered that, without Rap1, the L-type calcium channels were more active and more abundant at synapses all the time, increasing the release of neurotransmitters. The results showed that Rap1 is responsible for suppressing L-type calcium channels, allowing them to activate only at the proper moments, possibly during long-term memory formation.

"Our next step is to determine whether this new signaling pathway is altered in cases of mental disease," said Morozov. "If so, it could help us gain a better understanding of the molecular underpinnings of channel-related psychiatric disorders, such as bipolar disorder and schizophrenia. Such knowledge would go a long way toward developing new therapeutic methods."

The discovery appeared in The Journal of Neuroscience in the study "Rap1 Signaling Prevents L-Type Calcium Channel-Dependent Neurotransmitter Release," by Jaichandar Subramanian, now a research fellow at the Picower Institute for Learning and Memory at the Massachusetts Institute of Technology; Louis Dye, a staff scientist at the Microscopy and Imaging Core of the National Institute of Child Health and Human Development; and Morozov, who is also an assistant professor in Virginia Tech's School of Biomedical Engineering and Sciences.

Written by Ken Kingery

Paula Byron | EurekAlert!
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>