Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prozac and Celexa exhibit anti-inflammatory effects

25.02.2010
SSRIs offer model for drug development opportunities to treat rheumatoid arthritis

A new study found that fluoxetine (Prozac®) and citalopram (Celexa®) treatment significantly inhibited disease progression of collagen-induced arthritis (CIA) in mice. Research led by Sandra Sacre, Ph.D. from the Brighton and Sussex Medical School (BSMS) in the UK studied the anti-arthritic potential of these drugs, known as selective serotonin reuptake inhibitors (SSRIs), most commonly used to treat depression.

Both SSRIs exhibited anti-inflammatory effects and may provide drug development opportunities for arthritic conditions such as rheumatoid arthritis (RA). Full findings of this study are published in the March issue of Arthritis & Rheumatism, a journal of the American College of Rheumatology.

RA is an autoimmune disease that causes inflammation in the lining of the joints. Typically, RA first affects hand and foot joints and later the disease spreads to larger joints. Inflammation eventually erodes the cartilage between the joints (articular cartilage) causing pain, stiffness, joint deformity, and physical disability. According to the 2000 Global Disease Burden study by the World Health Organization (WHO), RA affects approximately 1% of the world population.

To understand the anti-inflammatory properties of SSRIs, the research team at The Kennedy Institute of Rheumatology investigated the use of fluoxetine and citalopram in mouse and human models of RA. Dr Sacre, a lecturer in molecular cell biology at BSMS, a partnership between the universities of Brighton and Sussex, said: "We were interested in SSRIs because of their reported anti-inflammatory effects." "Prior studies have shown that patients with depression who respond to treatment with SSRIs display a reduction in cytokine levels (signals that can induce inflammation), suggesting a connection between SSRIs and the immune system."

In the current study, researchers used a CIA mouse model due to the similarities to human RA, including synovitis, bone erosion and pannus formation. At the onset of arthritis, mice were treated daily for 7 days with a dose of 10 or 25 mg/kg of fluoxetine and 25 mg/kg of citalopram. At the lower dose of fluoxetine the mice showed a small reduction in the clinical score (a combined measure of redness, swelling and joint mobility/deformity) and a slower increase in paw swelling. At a dose of 25 mg/kg, fluoxetine halted disease progression and no further elevation was noted in the clinical score or paw swelling. "We observed reduced inflammation, reduced cartilage and bone erosion, and a preservation of the joint structure in the mice treated with a higher dose of fluoxetine," commented Dr. Sacre. Citalopram was not as effective as fluoxetine at inhibiting disease progression in this model.

Researchers also observed a decrease in cytokine production from cultures of human RA synovial joint tissues that were treated with SSRIs. Toll-like receptors (TLRs) are strong activators of immune cells leading to the production of cytokines that can induce inflammation. Fluoxetine was found to inhibit the activation of TLRs more effectively than citalopram.

"While the SSRIs effectively target TLRs contributing to inflammation and could provide therapeutic benefit in RA, they are not ideal candidates to progress into clinical trials," concluded Dr. Sacre. The levels of the SSRIs required to halt disease progression are higher than normally prescribed for standard treatment (depression in humans). "Our data suggests that effective inhibition of RA would require levels of the drugs higher than the safe therapeutic dosages." The authors suggest further study of the role of TLRs in chronic inflammation may uncover drugs that offer an effective treatment of RA in the future.

Article: "Fluoxetine and Citalopram Exhibit Potent Antiinflammatory Activity in Human and Murine Models of Rheumatoid Arthritis and Inhibit Toll-like Receptors." Sandra Sacre, Mino Medghalchi, Bernard Gregory, Fionula Brennan, and Richard Williams. Arthritis & Rheumatism; Published Online: February 25, 2010 (DOI: 10.1002/art.23704); Print Issue Date: March 2010.

This study is published in Arthritis & Rheumatism. Media wishing to receive a PDF of this article may contact medicalnews@wiley.com

Arthritis & Rheumatism is an official journal of the American College of Rheumatology and covers all aspects of inflammatory disease. The American College of Rheumatology (www.rheumatology.org) is the professional organization who share a dedication to healing, preventing disability, and curing the more than 100 types of arthritis and related disabling and sometimes fatal disorders of the joints, muscles, and bones. Members include practicing physicians, research scientists, nurses, physical and occupational therapists, psychologists, and social workers. For details please visit, http://www3.interscience.wiley.com/journal/76509746/home

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or www.interscience.wiley.com.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>