Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prozac and Celexa exhibit anti-inflammatory effects

25.02.2010
SSRIs offer model for drug development opportunities to treat rheumatoid arthritis

A new study found that fluoxetine (Prozac®) and citalopram (Celexa®) treatment significantly inhibited disease progression of collagen-induced arthritis (CIA) in mice. Research led by Sandra Sacre, Ph.D. from the Brighton and Sussex Medical School (BSMS) in the UK studied the anti-arthritic potential of these drugs, known as selective serotonin reuptake inhibitors (SSRIs), most commonly used to treat depression.

Both SSRIs exhibited anti-inflammatory effects and may provide drug development opportunities for arthritic conditions such as rheumatoid arthritis (RA). Full findings of this study are published in the March issue of Arthritis & Rheumatism, a journal of the American College of Rheumatology.

RA is an autoimmune disease that causes inflammation in the lining of the joints. Typically, RA first affects hand and foot joints and later the disease spreads to larger joints. Inflammation eventually erodes the cartilage between the joints (articular cartilage) causing pain, stiffness, joint deformity, and physical disability. According to the 2000 Global Disease Burden study by the World Health Organization (WHO), RA affects approximately 1% of the world population.

To understand the anti-inflammatory properties of SSRIs, the research team at The Kennedy Institute of Rheumatology investigated the use of fluoxetine and citalopram in mouse and human models of RA. Dr Sacre, a lecturer in molecular cell biology at BSMS, a partnership between the universities of Brighton and Sussex, said: "We were interested in SSRIs because of their reported anti-inflammatory effects." "Prior studies have shown that patients with depression who respond to treatment with SSRIs display a reduction in cytokine levels (signals that can induce inflammation), suggesting a connection between SSRIs and the immune system."

In the current study, researchers used a CIA mouse model due to the similarities to human RA, including synovitis, bone erosion and pannus formation. At the onset of arthritis, mice were treated daily for 7 days with a dose of 10 or 25 mg/kg of fluoxetine and 25 mg/kg of citalopram. At the lower dose of fluoxetine the mice showed a small reduction in the clinical score (a combined measure of redness, swelling and joint mobility/deformity) and a slower increase in paw swelling. At a dose of 25 mg/kg, fluoxetine halted disease progression and no further elevation was noted in the clinical score or paw swelling. "We observed reduced inflammation, reduced cartilage and bone erosion, and a preservation of the joint structure in the mice treated with a higher dose of fluoxetine," commented Dr. Sacre. Citalopram was not as effective as fluoxetine at inhibiting disease progression in this model.

Researchers also observed a decrease in cytokine production from cultures of human RA synovial joint tissues that were treated with SSRIs. Toll-like receptors (TLRs) are strong activators of immune cells leading to the production of cytokines that can induce inflammation. Fluoxetine was found to inhibit the activation of TLRs more effectively than citalopram.

"While the SSRIs effectively target TLRs contributing to inflammation and could provide therapeutic benefit in RA, they are not ideal candidates to progress into clinical trials," concluded Dr. Sacre. The levels of the SSRIs required to halt disease progression are higher than normally prescribed for standard treatment (depression in humans). "Our data suggests that effective inhibition of RA would require levels of the drugs higher than the safe therapeutic dosages." The authors suggest further study of the role of TLRs in chronic inflammation may uncover drugs that offer an effective treatment of RA in the future.

Article: "Fluoxetine and Citalopram Exhibit Potent Antiinflammatory Activity in Human and Murine Models of Rheumatoid Arthritis and Inhibit Toll-like Receptors." Sandra Sacre, Mino Medghalchi, Bernard Gregory, Fionula Brennan, and Richard Williams. Arthritis & Rheumatism; Published Online: February 25, 2010 (DOI: 10.1002/art.23704); Print Issue Date: March 2010.

This study is published in Arthritis & Rheumatism. Media wishing to receive a PDF of this article may contact medicalnews@wiley.com

Arthritis & Rheumatism is an official journal of the American College of Rheumatology and covers all aspects of inflammatory disease. The American College of Rheumatology (www.rheumatology.org) is the professional organization who share a dedication to healing, preventing disability, and curing the more than 100 types of arthritis and related disabling and sometimes fatal disorders of the joints, muscles, and bones. Members include practicing physicians, research scientists, nurses, physical and occupational therapists, psychologists, and social workers. For details please visit, http://www3.interscience.wiley.com/journal/76509746/home

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or www.interscience.wiley.com.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>